login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A113662
G.f. satisfies: A(x) = (1 + x*(d/dx x*A(x)) )^2.
8
1, 2, 9, 62, 566, 6372, 84837, 1300214, 22511322, 434226300, 9231983850, 214481625516, 5406323440492, 146963638311880, 4286068830850797, 133501081493969574, 4423404073559930162, 155359770700317171084
OFFSET
0,2
COMMENTS
Self-convolution of A000699 (after ignoring the initial term), [previous name].
LINKS
FORMULA
G.f. satisfies: A(x) = (1 + x*(d/dx x*A(x)) )^2.
a(n) ~ 2^(n + 5/2) * n^(n+1) / exp(n+1). - Vaclav Kotesovec, Oct 23 2020
EXAMPLE
G.f. A(x) = 1 + 2*x + 9*x^2 + 62*x^3 + 566*x^4 + 6372*x^5 + 84837*x^6 + 1300214*x^7 + ...
PROG
(PARI) {a(n)=local(A=1+x*O(x^n)); for(i=1, n, A=(1+x*deriv(x*A))^2); polcoeff(A, n, x)}
(PARI)
A000699_seq(N) = {
my(a = vector(N)); a[1] = 1;
for (n=2, N, a[n] = sum(k=1, n-1, (2*k-1)*a[k]*a[n-k])); a;
};
Vec(sqr(Ser(A000699_seq(N)))) \\ Gheorghe Coserea, Jan 23 2017
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 04 2005
EXTENSIONS
Name replaced with an existing formula by Paul D. Hanna, Sep 16 2024
STATUS
approved