login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A113661
Expansion of (phi(x)^3/phi(x^3) - 1)/6 where phi() is a Ramanujan theta function.
4
1, 2, 1, -1, 0, 2, 2, 2, 1, 0, 0, -1, 2, 4, 0, -1, 0, 2, 2, 0, 2, 0, 0, 2, 1, 4, 1, -2, 0, 0, 2, 2, 0, 0, 0, -1, 2, 4, 2, 0, 0, 4, 2, 0, 0, 0, 0, -1, 3, 2, 0, -2, 0, 2, 0, 4, 2, 0, 0, 0, 2, 4, 2, -1, 0, 0, 2, 0, 0, 0, 0, 2, 2, 4, 1, -2, 0, 4, 2, 0, 1, 0, 0, -2, 0, 4, 0, 0, 0, 0, 4, 0, 2, 0, 0, 2, 2, 6, 0, -1, 0, 0, 2, 4, 0
OFFSET
1,2
COMMENTS
Ramanujan theta functions: f(q) := Product_{k>=1} (1-(-q)^k) (see A121373), phi(q) := theta_3(q) := Sum_{k=-oo..oo} q^(k^2) (A000122), psi(q) := Sum_{k=0..oo} q^(k*(k+1)/2) (A010054), chi(q) := Product_{k>=0} (1+q^(2k+1)) (A000700).
REFERENCES
Bruce C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, 1991, see p. 227, Entry 4(iv).
LINKS
Tewodros Amdeberhan, George E. Andrews, and Roberto Tauraso, Further study on MacMahon-type sums of divisors, arXiv:2409.20400 [math.NT], 2024. See pp. 12, 18.
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions.
FORMULA
a(n) is multiplicative and a(2^e) = (1-3(-1)^e)/2 if e>0, a(3^e) = 1, a(p^e) = e+1 if p == 1 (mod 6), a(p^e) = (1+(-1)^e)/2 if p == 5 (mod 6).
Moebius transform is period 12 sequence [1, 1, 0, -3, -1, 0, 1, 3, 0, -1, -1, 0, ...].
Expansion of ((eta(q^2)^15*eta(q^3)^2*eta(q^12)^2)/(eta(q)^6*eta(q^4)^6*eta(q^6)^5)-1)/6 in powers of q.
G.f.: Sum_{k>0} x^k/(1+x^k+x^(2k)) +2*x^(4k-2)/(1+x^(4k-2)+x^(8k-4)).
6*a(n) = A113660(n), if n>0.
G.f.: Sum_{k >= 1} x^k/(1 + (-x)^k + x^(2*k)). - Peter Bala, Jan 12 2021
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Pi/(2*sqrt(3)) = 0.906899... (A093766). - Amiram Eldar, Nov 21 2023
EXAMPLE
G.f. = x + 2*x^2 + x^3 - x^4 + 2*x^6 + 2*x^7 + 2*x^8 + x^9 - x^12 + ...
MAPLE
p := x -> convert(series(add(x^n/(1+(-x)^n+x^(2*n)), n = 1..100), x, 101), polynom):
seq(coeff(p(x), x, n), n = 1..100); # Peter Bala, Jan 12 2021
MATHEMATICA
a[n_] := SeriesCoefficient[(EllipticTheta[3, 0, q]^3/EllipticTheta[3, 0, q^3] - 1)/6, {q, 0, n}]; Table[a[n], {n, 0, 50}] (* G. C. Greubel, Dec 16 2017 *)
PROG
(PARI) {a(n)=local(x); if(n<1, 0, x=valuation(n, 2); if(n%2, 1, (1-3*(-1)^x)/2)*sumdiv(n/2^x, d, kronecker(-3, d)))}
(PARI) {a(n)=local(A, p, e); if(n<1, 0, A=factor(n); prod(k=1, matsize(A)[1], if(p=A[k, 1], e=A[k, 2]; if(p==2, (1-3*(-1)^e)/2, if(p==3, 1, if(p%6==1, e+1, !(e%2)))))))}
(PARI) {a(n)=if(n<1, 0, direuler(p=2, n, if(p==2, 2-(1-2*X)/(1-X^2), 1/(1-X)/(1-kronecker(-3, p)*X)))[n])}
(PARI) {a(n)=local(A); if(n<1, 0, A=x*O(x^n); polcoeff( (eta(x^2+A)^15*eta(x^3+A)^2*eta(x^12+A)^2/ eta(x+A)^6/eta(x^4+A)^6/eta(x^6+A)^5-1)/6, n))}
CROSSREFS
KEYWORD
sign,mult
AUTHOR
Michael Somos, Nov 03 2005
STATUS
approved