login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A353366
Dirichlet inverse of A110963, which is a fractalization of Kimberling's paraphrases sequence (A003602).
4
1, -1, -1, 0, -2, 1, -1, 0, -2, 2, -2, 0, -4, 1, 3, 0, -5, 2, -3, 0, -4, 2, -2, 0, -3, 4, 1, 0, -8, -3, -1, 0, -5, 5, -1, 0, -10, 3, 5, 0, -11, 4, -6, 0, -4, 2, -2, 0, -12, 3, 3, 0, -14, -1, 4, 0, -9, 8, -8, 0, -16, 1, 14, 0, -1, 5, -9, 0, -14, 1, -5, 0, -19, 10, -4, 0, -16, -5, -3, 0, -12, 11, -11, 0, -2, 6, 10
OFFSET
1,5
LINKS
FORMULA
a(1) = 1; a(n) = -Sum_{d|n, d < n} A110963(n/d) * a(d).
a(n) = A353367(n) - A110963(n).
PROG
(PARI)
up_to = 65537;
DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(d<n, v[n/d]*u[d], 0)))); (u) }; \\ Compute the Dirichlet inverse of the sequence given in input vector v.
A003602(n) = (1+(n>>valuation(n, 2)))/2;
A110963(n) = if(n%2, A003602((1+n)/2), A110963(n/2));
v353366 = DirInverseCorrect(vector(up_to, n, A110963(n)));
A353366(n) = v353366[n];
(Python)
from functools import lru_cache
from sympy import divisors
@lru_cache(maxsize=None)
def A353366(n): return 1 if n==1 else -sum(((1+(m:=d>>(~d&d-1).bit_length())>>(m+1&-m-1).bit_length())+1)*A353366(n//d) for d in divisors(n, generator=True) if d>1) # Chai Wah Wu, Jan 04 2024
CROSSREFS
Cf. also A349134, A353368.
Sequence in context: A356894 A338019 A058394 * A122860 A113661 A113974
KEYWORD
sign
AUTHOR
Antti Karttunen, Apr 18 2022
STATUS
approved