login
A110963
Fractalization of Kimberling's paraphrases sequence beginning with 1.
6
1, 1, 1, 1, 2, 1, 1, 1, 3, 2, 2, 1, 4, 1, 1, 1, 5, 3, 3, 2, 6, 2, 2, 1, 7, 4, 4, 1, 8, 1, 1, 1, 9, 5, 5, 3, 10, 3, 3, 2, 11, 6, 6, 2, 12, 2, 2, 1, 13, 7, 7, 4, 14, 4, 4, 1, 15, 8, 8, 1, 16, 1, 1, 1, 17, 9, 9, 5, 18, 5, 5, 3, 19, 10, 10, 3, 20, 3, 3, 2, 21, 11, 11, 6, 22, 6, 6, 2, 23, 12, 12, 2, 24, 2, 2, 1, 25, 13
OFFSET
1,5
COMMENTS
Self-descriptive sequence: terms at even indices are the sequence itself, terms at odd indices (the skeleton of this sequence) are the terms of Kimberling's paraphrases sequence (A003602) beginning with 1.
FORMULA
For even n, a(n) = a(n/2), for odd n, a(n) = A003602((1+n)/2). - Antti Karttunen, Apr 03 2022
For n >= 0, (Start)
a(4n+2) = a(4n+3) = A003602(1+n).
a(8n+1) = A005408(n) = 2*n + 1.
a(4n+1) = a(8n+2) = a(8n+3) = 1+n.
a(n) = A110962(n-1) + 1.
(End)
a(n) = A353367(4*n). - Antti Karttunen, Apr 20 2022
PROG
(PARI)
A003602(n) = (1+(n>>valuation(n, 2)))/2;
A110963(n) = if(n%2, A003602((1+n)/2), A110963(n/2)); \\ Antti Karttunen, Apr 03 2022
(PARI) a(n) = n>>=valuation(n, 2); 1+n>>valuation(2*n+2, 2); \\ Ruud H.G. van Tol, Jun 23 2024
(Python)
def A110963(n): return (1+(m:=n>>(~n&n-1).bit_length())>>(m+1&-m-1).bit_length())+1 # Chai Wah Wu, Jan 04 2024
CROSSREFS
One more than A110962 (but note the different starting offsets).
Cf. A353366 (Dirichlet inverse), A353367 (sum with it).
Sequence in context: A288003 A304382 A304717 * A292622 A292869 A106348
KEYWORD
base,easy,nonn
AUTHOR
Alexandre Wajnberg, Sep 26 2005
EXTENSIONS
Entry edited, starting offset corrected (from 0 to 1), and the offsets in formulas changed accordingly, and more terms added by Antti Karttunen, Apr 03 2022
STATUS
approved