login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A113974
Expansion of (1-phi(x^3)^3/phi(x))/2 where phi() is a Ramanujan theta function.
4
1, -2, 1, -1, 0, -2, 2, -2, 1, 0, 0, -1, 2, -4, 0, -1, 0, -2, 2, 0, 2, 0, 0, -2, 1, -4, 1, -2, 0, 0, 2, -2, 0, 0, 0, -1, 2, -4, 2, 0, 0, -4, 2, 0, 0, 0, 0, -1, 3, -2, 0, -2, 0, -2, 0, -4, 2, 0, 0, 0, 2, -4, 2, -1, 0, 0, 2, 0, 0, 0, 0, -2, 2, -4, 1, -2, 0, -4, 2, 0, 1, 0, 0, -2, 0, -4, 0, 0, 0, 0, 4, 0, 2, 0, 0, -2, 2, -6, 0, -1, 0, 0, 2, -4, 0
OFFSET
1,2
COMMENTS
Ramanujan theta functions: f(q) := Prod_{k>=1} (1-(-q)^k) (see A121373), phi(q) := theta_3(q) := Sum_{k=-oo..oo} q^(k^2) (A000122), psi(q) := Sum_{k=0..oo} q^(k*(k+1)/2) (A010054), chi(q) := Prod_{k>=0} (1+q^(2k+1)) (A000700).
REFERENCES
Bruce C. Berndt, Ramanujan's Notebooks Part V, Springer-Verlag, 1985, see p. 375, Entry 35.
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions.
FORMULA
a(n) is multiplicative and a(2^e) = ((-1)^e-3)/2, a(3^e) = 1, a(p^e) = e+1 if p == 1 (mod 6), a(p^e) = (1+(-1)^e)/2 if p == 5 (mod 6). [corrected by Amiram Eldar, Nov 14 2023]
Moebius transform is period 12 sequence [1, -3, 0, 1, -1, 0, 1, -1, 0, 3, -1, 0, ...].
G.f.: (1-theta_3(q^3)^3/theta_3(q))/2.
G.f.: Sum_{k>0} x^(3k-2)/(1-(-x)^(3k-2)) - x^(3k-1)/(1-(-x)^(3k-1)) = Sum_{k>0} -(-1)^k x^k/(1+x^k+x^(2k)) -2 x^(4k)/(1+x^(4k)+x^(8k)).
-2*a(n) = A113973(n), if n>0.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = -Pi/(6*sqrt(3)) = -0.302299... . - Amiram Eldar, Nov 14 2023
MATHEMATICA
a[n_]:= SeriesCoefficient[(1 - EllipticTheta[3, 0, q^3]^3/EllipticTheta[ 3, 0, q])/2, {q, 0, n}]; Table[a[n], {n, 1, 50}] (* G. C. Greubel, Dec 16 2017 *)
f[p_, e_] := If[Mod[p, 6] == 1, e + 1, (1 + (-1)^e)/2]; f[2, e_] := ((-1)^e - 3)/2; f[3, e_] := 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 14 2023 *)
PROG
(PARI) {a(n)=local(x); if(n<1, 0, x=valuation(n, 2); if(n%2, 1, (-3+(-1)^x)/2)*sumdiv(n/2^x, d, kronecker(-3, d)))}
(PARI) {a(n)=local(A, p, e); if(n<1, 0, A=factor(n); prod(k=1, matsize(A)[1], if(p=A[k, 1], e=A[k, 2]; if(p==2, (-3+(-1)^e)/2, if(p==3, 1, if(p%6==1, e+1, !(e%2)))))))}
(PARI) {a(n)=if(n<1, 0, direuler(p=2, n, if(p==2, 2-(1+2*X)/(1-X^2), 1/(1-X)/(1-kronecker(-3, p)*X)))[n])}
(PARI) {a(n)=local(A); if(n<0, 0, A=sum(k=1, sqrtint(n), 2*x^k^2, 1+x*O(x^n)); polcoeff( (1-subst(A+x*O(x^(n\3)), x, x^3)^3/A)/2, n))}
CROSSREFS
KEYWORD
sign,easy,mult
AUTHOR
Michael Somos, Nov 10 2005
STATUS
approved