The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A113973 Expansion of phi(x^3)^3/phi(x) where phi() is a Ramanujan theta function. 10
 1, -2, 4, -2, 2, 0, 4, -4, 4, -2, 0, 0, 2, -4, 8, 0, 2, 0, 4, -4, 0, -4, 0, 0, 4, -2, 8, -2, 4, 0, 0, -4, 4, 0, 0, 0, 2, -4, 8, -4, 0, 0, 8, -4, 0, 0, 0, 0, 2, -6, 4, 0, 4, 0, 4, 0, 8, -4, 0, 0, 0, -4, 8, -4, 2, 0, 0, -4, 0, 0, 0, 0, 4, -4, 8, -2, 4, 0, 8, -4, 0, -2, 0, 0, 4, 0, 8, 0, 0, 0, 0, -8, 0, -4, 0, 0, 4, -4, 12, 0, 2, 0, 0, -4, 8 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Ramanujan theta functions: f(q) := Prod_{k>=1} (1-(-q)^k) (see A121373), phi(q) := theta_3(q) := Sum_{k=-oo..oo} q^(k^2) (A000122), psi(q) := Sum_{k=0..oo} q^(k*(k+1)/2) (A010054), chi(q) := Prod_{k>=0} (1+q^(2k+1)) (A000700). REFERENCES B. C. Berndt, Ramanujan's Notebooks Part V, Springer-Verlag, see p. 375 Entry 35. LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Michael Somos, Introduction to Ramanujan theta functions Eric Weisstein's World of Mathematics, Ramanujan Theta Functions FORMULA a(n)=-2*b(n) where b(n) is multiplicative and b(2^e) = (1-3(-1)^e)/2 if e>0, b(3^e) = 1, b(p^e) = e+1 if p == 1 (mod 6), b(p^e) = (1+(-1)^e)/2 if p == 5 (mod 6). Euler transform of period 12 sequence [ -2, 3, 4, 1, -2, -6, -2, 1, 4, 3, -2, -2, ...]. Moebius transform is period 12 sequence [ -2, 6, 0, -2, 2, 0, -2, 2, 0, -6, 2, 0, ...]. Expansion of (eta(q)^2*eta(q^4)^2*eta(q^6)^15)/ (eta(q^2)^5*eta(q^3)^6*eta(q^12)^6) in powers of q. G.f.: theta_3(q^3)^3/theta_3(q). G.f.: 1+2( Sum_{k>0} x^(3k-1)/(1-(-x)^(3k-1)) - x^(3k-2)/(1-(-x)^(3k-2))) = 1 +2( Sum_{k>0} (-1)^k x^k/(1+x^k+x^(2k)) +2 x^(4k)/(1+x^(4k)+x^(8k)) ). MATHEMATICA s = EllipticTheta[3, 0, q^3]^3/EllipticTheta[3, 0, q] + O[q]^105; CoefficientList[s, q] (* Jean-François Alcover, Dec 04 2015 *) PROG (PARI) {a(n)=local(x); if(n<1, n==0, x=valuation(n, 2); if(n%2, -2, (3-(-1)^x))*sumdiv(n/2^x, d, kronecker(-3, d)))} (PARI) {a(n)=local(A, p, e); if(n<1, n==0, A=factor(n); -2*prod(k=1, matsize(A)[1], if(p=A[k, 1], e=A[k, 2]; if(p==2, (-3+(-1)^e)/2, if(p==3, 1, if(p%6==1, e+1, !(e%2)))))))} (PARI) {a(n)=if(n<1, n==0, -2*direuler(p=2, n, if(p==2, 2-(1+2*X)/(1-X^2), 1/(1-X)/(1-kronecker(-3, p)*X)))[n])} (PARI) {a(n)=local(A); if(n<0, 0, A=sum(k=1, sqrtint(n), 2*x^k^2, 1+x*O(x^n)); polcoeff( subst(A+x*O(x^(n\3)), x, x^3)^3/A, n))} (PARI) {a(n)=local(A); if(n<0, 0, A=x*O(x^n); polcoeff( eta(x+A)^2*eta(x^4+A)^2*eta(x^6+A)^15/ eta(x^2+A)^5/eta(x^3+A)^6/eta(x^12+A)^6, n))} CROSSREFS a(n)=-2*A113974(n) if n>0. Sequence in context: A077748 A294389 A152753 * A123330 A300821 A194564 Adjacent sequences:  A113970 A113971 A113972 * A113974 A113975 A113976 KEYWORD sign AUTHOR Michael Somos, Nov 10 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 25 13:05 EDT 2021. Contains 346290 sequences. (Running on oeis4.)