OFFSET
0,2
COMMENTS
Numbers a(n) which are the square of triangular number T(b(n)), where b(n) is the sequence A006451(n) of numbers n such that T(n)+1 is a square.
REFERENCES
V. Pletser, On some solutions of the Bachet-Mordell equation for large parameter values, to be submitted, April 2017.
LINKS
Vladimir Pletser, Table of n, a(n) for n = 0..500
M.A. Bennett and A. Ghadermarzi, Data on Mordell's curve.
Michael A. Bennett, Amir Ghadermarzi, Mordell's equation : a classical approach, arXiv:1311.7077 [math.NT], 2013.
Eric Weisstein's World of Mathematics, Mordell Curve
FORMULA
Since b(n) = 8*sqrt(T(b(n-2))+1)+ b(n-4) = 8*sqrt((b(n-2)*(b(n-2)+1)/2)+1)+ b(n-4), with b(-1)=-1, b(0)=0, b(1)=2, b(2)=5 (see A006451) and a(n) = T(b(n)) (this sequence), one has :
a(n) = ([8*sqrt((b(n-2)*(b(n-2)+1)/2)+1)+ b(n-4)]*[ 8*sqrt((b(n-2)*(b(n-2)+1)/2)+1)+ b(n-4)+1]/2)^2.
Empirical g.f.: 9*x*(1 + 24*x + 387*x^2 + 864*x^3 + 387*x^4 + 24*x^5 + x^6) / ((1 - x)*(1 - 34*x + x^2)*(1 - 6*x + x^2)*(1 + 6*x + x^2)*(1 + 34*x + x^2)). - Colin Barker, Apr 30 2017
EXAMPLE
MAPLE
restart: bm2:=-1: bm1:=0: bp1:=2: bp2:=5: print ('0, 0', '1, 9', '2, 225'); for n from 3 to 1000 do b:= 8*sqrt((bp1^2+bp1)/2+1)+bm2; a:=(b*(b+1)/2)^2; print(n, a); bm2:=bm1; bm1:=bp1; bp1:=bp2; bp2:=b; end do:
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vladimir Pletser, Apr 30 2017
STATUS
approved