OFFSET
1,2
COMMENTS
By sum of cubes factorization, every a(n) > 1 is a multiple of 9, hence none of these are prime, unlike the case of sum of squares of factorials (i.e. (1!)^2 + (2!)^2+ (3!)^2+ (4!)^2 = 617 is prime; 41117342095090841723228045851817 = (1!)^2 + (2!)^2 + (3!)^2 + (4!)^2 + (5!)^2 + (6!)^2 + (7!)^2 + (8!)^2 + (9!)^2 + (10!)^2 + (11!)^2 + (12!)^2 + (13!)^2 + (14!)^2 + (15!)^2 + (16!)^2 + (17!)^2 + (18!)^2 is prime).
LINKS
Seiichi Manyama, Table of n, a(n) for n = 1..181
EXAMPLE
a(18) = (1!)^3 + (2!)^3 + (3!)^3 + (4!)^3 + (5!)^3 + (6!)^3 + (7!)^3 + (8!)^3 + (9!)^3 + (10!)^3 + (11!)^3 + (12!)^3 + (13!)^3 + (14!)^3 + (15!)^3 + (16!)^3 + (17!)^3 + (18!)^3 = 262480797594664584673157017306412926841599694049.
MATHEMATICA
nxt[{n_, a_}]:={n+1, a+((n+1)!)^3}; Transpose[NestList[nxt, {1, 1}, 20]][[2]] (* Harvey P. Dale, Mar 08 2015 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, May 18 2008
STATUS
approved