login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A047453 Numbers that are congruent to {0, 1, 2, 3, 4} mod 8. 1
0, 1, 2, 3, 4, 8, 9, 10, 11, 12, 16, 17, 18, 19, 20, 24, 25, 26, 27, 28, 32, 33, 34, 35, 36, 40, 41, 42, 43, 44, 48, 49, 50, 51, 52, 56, 57, 58, 59, 60, 64, 65, 66, 67, 68, 72, 73, 74, 75, 76, 80, 81, 82, 83, 84, 88, 89, 90, 91, 92, 96, 97, 98, 99, 100, 104 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000

Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,1,-1).

FORMULA

G.f.: x^2*(1+x+x^2+x^3+4*x^4) / ( (x^4+x^3+x^2+x+1)*(x-1)^2 ). - R. J. Mathar, Dec 07 2011

From Wesley Ivan Hurt, Jul 31 2016: (Start)

a(n) = a(n-1) + a(n-5) - a(n-6) for n > 6, a(n) = a(n-5) + 8 for n > 5.

a(n) = (40*n - 70 + 3*(n mod 5) + 3*((n+1) mod 5) + 3*((n+2) mod 5) + 3*((n+3) mod 5) - 12*((n+4) mod 5))/25.

a(5k) = 8k-4, a(5k-1) = 8k-5, a(5k-2) = 8k-6, a(5k-3) = 8k-7, a(5k-4) = 8k-8. (End)

MAPLE

A047453:=n->8*floor(n/5)+[(0, 1, 2, 3, 4)][(n mod 5)+1]: seq(A047453(n), n=0..100); # Wesley Ivan Hurt, Jul 31 2016

MATHEMATICA

Select[Range[0, 100], MemberQ[{0, 1, 2, 3, 4}, Mod[#, 8]]&] (* or *) LinearRecurrence[{1, 0, 0, 0, 1, -1}, {0, 1, 2, 3, 4, 8}, 80] (* Harvey P. Dale, Jul 04 2015 *)

PROG

(MAGMA) [n : n in [0..150] | n mod 8 in [0..4]]; // Wesley Ivan Hurt, Jul 31 2016

CROSSREFS

Sequence in context: A172002 A274927 A066338 * A037467 A165564 A326704

Adjacent sequences:  A047450 A047451 A047452 * A047454 A047455 A047456

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 19 09:43 EDT 2021. Contains 345126 sequences. (Running on oeis4.)