login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A177457
Triangle read by rows; union of A007318 and A112467.
1
0, 1, 1, -1, 1, 1, 0, 1, -1, 1, 1, 1, 2, -1, 1, -1, 1, 1, 2, 3, 0, 3, -2, 1, -1, 1, 1, 3, 4, 2, 6, -2, 4, -3, 1, -1, 1, 1, 4, 5, 5, 10, 0, 10, -5, 5, -4, 1, -1, 1, 1, 5, 6, 9, 15, 5, 20, -5, 15, -9, 6, -5, 1, -1, 1, 1, 6, 7, 14, 21, 14, 35, 0, 35, -14, 21, -14, 7, -6, 1, -1, 1, 1, 7, 8, 20, 28
OFFSET
1,13
FORMULA
T(n, k) = T(n-1, k-1) + T(n-1, k+1), for n > 2 and T(n, k) = 0 for negative k or k > 2*n-1. - Thomas Scheuerle, Feb 02 2023
EXAMPLE
Triangle begins:
0
1 1 -1
1 1 0 1 -1
1 1 1 2 -1 1 -1
1 1 2 3 0 3 -2 1 -1
1 1 3 4 2 6 -2 4 -3 1 -1
PROG
(MATLAB)
function a = A177457( max_row )
a = [0 1 1 -1];
for n = 3:max_row
r = [0 0 a(end-((n-2)*2):end) 0 0];
a = [a r(1:end-2)+r(3:end)];
end
end % Thomas Scheuerle, Feb 02 2023
CROSSREFS
Sequence in context: A283530 A326753 A062093 * A373125 A357139 A046214
KEYWORD
tabf,sign
AUTHOR
Mark Dols, May 09 2010
EXTENSIONS
More terms from Thomas Scheuerle, Feb 02 2023
STATUS
approved