login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A112467 Riordan array ((1-2x)/(1-x), x/(1-x)). 24
1, -1, 1, -1, 0, 1, -1, -1, 1, 1, -1, -2, 0, 2, 1, -1, -3, -2, 2, 3, 1, -1, -4, -5, 0, 5, 4, 1, -1, -5, -9, -5, 5, 9, 5, 1, -1, -6, -14, -14, 0, 14, 14, 6, 1, -1, -7, -20, -28, -14, 14, 28, 20, 7, 1, -1, -8, -27, -48, -42, 0, 42, 48, 27, 8, 1, -1, -9, -35, -75, -90, -42, 42, 90, 75, 35, 9, 1, -1, -10, -44, -110, -165, -132, 0, 132, 165, 110 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,12

COMMENTS

Row sums are A000007. Diagonal sums are -F(n-2). Inverse is A112468. T(2n,n)=0.

(-1,1)-Pascal triangle. - Philippe Deléham, Aug 07 2006

Apart from initial term, same as A008482. - Philippe Deléham, Nov 07 2006

Each column equals the cumulative sum of the previous column. - Mats Granvik, Mar 15 2010

Reading along antidiagonals generates in essence rows of A192174. - Paul Curtz, Oct 02 2011

Triangle T(n,k), read by rows, given by (-1,2,0,0,0,0,0,0,0,...) DELTA (1,0,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938. - Philippe Deléham, Nov 01 2011

LINKS

G. C. Greubel, Rows n = 0..100 of triangle, flattened

Paul Barry, A Note on Riordan Arrays with Catalan Halves, arXiv:1912.01124 [math.CO], 2019.

E. Deutsch, L. Ferrari and S. Rinaldi, Production Matrices, Advances in Mathematics, 34 (2005) pp. 101-122.

D. Foata, G.-N. Han, The doubloon polynomial triangle, Ram. J. 23 (2010), 107-126.

Jack Ramsay, On Arithmetical Triangles, The Pulse of Long Island, June 1965 [Mentions application to design of antenna arrays. Annotated scan.]

FORMULA

Number triangle T(n, k) = binomial(n, n-k) - 2*binomial(n-1, n-k-1);

Sum_{k=0..n} T(n, k)*x^k = (x-1)*(x+1)^(n-1). - Philippe Deléham, Oct 03 2005

T(n,k) = ((2*k-n)/n)*binomial(n, k), with T(0,0)=1. - Roger L. Bagula, Feb 16 2009; modified by G. C. Greubel, Dec 04 2019

T(n,k) = T(n-1,k-1) + T(n-1,k) with T(0,0)=1, T(1,0)=-1, T(n,k)=0 for k>n or for n<0. - Philippe Deléham, Nov 01 2011

G.f.: (1-2x)/(1-(1+y)*x). - Philippe Deléham, Dec 15 2011

Sum_{k=0..n} T(n,k)*x^k = A000007(n), A133494(n), A081294(n), A005053(n), A067411(n), A199661(n), A083233(n) for x = 1, 2, 3, 4, 5, 6, 7, respectively. - Philippe Deléham, Dec 15 2011

exp(x) * e.g.f. for row n = e.g.f. for diagonal n. For example, for n = 3 we have exp(x)*(-1 - x + x^2/2! + x^3/3!) = -1 - 2*x - 2*x^2/2! + 5*x^4/4! + 14*x^5/5! + .... The same property holds more generally for Riordan arrays of the form ( f(x), x/(1 - x) ). - Peter Bala, Dec 21 2014

Sum_{k=0..n} T(n,k) = 0^n = A000007(n). - G. C. Greubel, Dec 04 2019

EXAMPLE

Triangle starts:

1;

-1, 1;

-1, 0, 1;

-1, -1, 1, 1;

-1, -2, 0, 2, 1;

-1, -3, -2, 2, 3, 1;

-1, -4, -5, 0, 5, 4, 1;

-1, -5, -9, -5, 5, 9, 5, 1;

-1, -6, -14, -14, 0, 14, 14, 6, 1;

-1, -7, -20, -28, -14, 14, 28, 20, 7, 1;

-1, -8, -27, -48, -42, 0, 42, 48, 27, 8, 1;

-1, -9, -35, -75, -90, -42, 42, 90, 75, 35, 9, 1;

...

Production matrix begins

1, 1,

-2, -1, 1,

2, 0, -1, 1,

-2, 0, 0, -1, 1,

2, 0, 0, 0, -1, 1,

-2, 0, 0, 0, 0, -1, 1,

2, 0, 0, 0, 0, 0, -1, 1

- Paul Barry, Apr 08 2011

MAPLE

seq(seq( `if`(n=0, 1, (2*k-n)*binomial(n, k)/n), k=0..n), n=0..10); # G. C. Greubel, Dec 04 2019

MATHEMATICA

T[n_, k_]= If[n==0, 1, ((2*k-n)/n)*Binomial[n, k]]; Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* Roger L. Bagula, Feb 16 2009; modified by G. C. Greubel, Dec 04 2019 *)

PROG

(PARI) T(n, k) = if(n==0, 1, (2*k-n)*binomial(n, k)/n ); \\ G. C. Greubel, Dec 04 2019

(Magma) [n eq 0 select 1 else (2*k-n)*Binomial(n, k)/n: k in [0..n], n in [0..10]]; // G. C. Greubel, Dec 04 2019

(Sage)

def T(n, k):

if (n==0): return 1

else: return (2*k-n)*binomial(n, k)/n

[[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Dec 04 2019

CROSSREFS

Same first 3 rows as in A054525.

Cf. A008482, A037012, A080232, A112466, A112467, A174293, A174294, A174295, A174296, A174297.

Sequence in context: A080232 A008482 A037012 * A112466 A166348 A294658

Adjacent sequences: A112464 A112465 A112466 * A112468 A112469 A112470

KEYWORD

easy,sign,tabl

AUTHOR

Paul Barry, Sep 06 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 6 10:23 EST 2022. Contains 358630 sequences. (Running on oeis4.)