login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A112466 Riordan array ((1+2x)/(1+x), x/(1+x)). 4
1, 1, 1, -1, 0, 1, 1, -1, -1, 1, -1, 2, 0, -2, 1, 1, -3, 2, 2, -3, 1, -1, 4, -5, 0, 5, -4, 1, 1, -5, 9, -5, -5, 9, -5, 1, -1, 6, -14, 14, 0, -14, 14, -6, 1, 1, -7, 20, -28, 14, 14, -28, 20, -7, 1, -1, 8, -27, 48, -42, 0, 42, -48, 27, -8, 1, 1, -9, 35, -75, 90, -42, -42, 90, -75, 35, -9, 1, -1, 10, -44, 110, -165, 132, 0, -132, 165, -110, 44 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,12

COMMENTS

Row sums are (1,2,0,0,0,...).

Inverse is A112465.

Triangle T(n,k), 0 <= k <= n, read by rows, given by [1, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...] DELTA [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Aug 07 2006; corrected by Philippe Deléham, Dec 11 2008

LINKS

Michael De Vlieger, Table of n, a(n) for n = 0..11475 (rows 0 <= n <= 150, flattened)

Paul Barry, A Note on Riordan Arrays with Catalan Halves, arXiv:1912.01124 [math.CO], 2019.

E. Deutsch, L. Ferrari and S. Rinaldi, Production Matrices, Advances in Mathematics, 34 (2005) pp. 101-122.

FORMULA

Number triangle T(n,k) = (-1)^(n-k)*(C(n, n-k) - 2*C(n-1, n-k-1)).

Sum_{k=0..floor(n/2)} T(n-k,k) = (-1)^(n+1)*Fibonacci(n-2).

T(2n,n) = 0.

Sum_{k=0..n} T(n,k)*x^k = (x+1)*(x-1)^(n-1), for n >= 1. - Philippe Deléham, Oct 03 2005

T(0,0)=T(1,0)=T(1,1)=1, T(n,k)=0 if n < 0 or if n < k, T(n,k) = T(n-1,k-1) - T(n-1,k) for n > 1. - Philippe Deléham, Nov 26 2006

G.f.: (1+2*x)/(1+x-x*y). - R. J. Mathar, Aug 11 2015

EXAMPLE

Triangle starts

1;

1, 1;

-1, 0, 1;

1, -1, -1, 1;

-1, 2, 0, -2, 1;

1, -3, 2, 2, -3, 1;

-1, 4, -5, 0, 5, -4, 1;

From Paul Barry, Apr 08 2011: (Start)

Production matrix begins

1, 1;

-2, -1, 1;

2, 0, -1, 1;

-2, 0, 0, -1, 1;

2, 0, 0, 0, -1, 1;

-2, 0, 0, 0, 0, -1, 1;

2, 0, 0, 0, 0, 0, -1, 1; (End)

MAPLE

seq(seq( (-1)^(n-k)*(2*binomial(n-1, k-1)-binomial(n, k)), k=0..n), n=0..10); # G. C. Greubel, Feb 19 2020

MATHEMATICA

{1}~Join~Table[(Binomial[n, n - k] - 2 Binomial[n - 1, n - k - 1])*(-1)^(n - k), {n, 12}, {k, 0, n}] // Flatten (* Michael De Vlieger, Feb 18 2020 *)

PROG

(PARI) T(n, k) = (-1)^(n-k)*(binomial(n, n-k) - 2*binomial(n-1, n-k-1)); \\ Michel Marcus, Feb 19 2020

CROSSREFS

Cf. A008482, A037012, A097808, A112467.

Sequence in context: A008482 A037012 A112467 * A166348 A294658 A127543

Adjacent sequences: A112463 A112464 A112465 * A112467 A112468 A112469

KEYWORD

easy,sign,tabl

AUTHOR

Paul Barry, Sep 06 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 6 06:48 EST 2022. Contains 358595 sequences. (Running on oeis4.)