The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A097808 Riordan array ((1+2x)/(1+x)^2, 1/(1+x)) read by rows. 9
 1, 0, 1, -1, -1, 1, 2, 0, -2, 1, -3, 2, 2, -3, 1, 4, -5, 0, 5, -4, 1, -5, 9, -5, -5, 9, -5, 1, 6, -14, 14, 0, -14, 14, -6, 1, -7, 20, -28, 14, 14, -28, 20, -7, 1, 8, -27, 48, -42, 0, 42, -48, 27, -8, 1, -9, 35, -75, 90, -42, -42, 90, -75, 35, -9, 1, 10, -44, 110, -165, 132, 0, -132, 165, -110, 44, -10, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,7 COMMENTS Inverse of A059260. Row sums are inverse binomial transform of A040000, with g.f. (1+2x)/(1+x). Diagonal sums are (-1)^n(1-Fib(n)). A097808=B^(-1)*A097806, where B is the binomial matrix. B*A097808*B^(-1) is the inverse of A097805. LINKS Robert Israel, Table of n, a(n) for n = 0..10010  (rows 0 to 140, flattened) FORMULA Columns have g.f. (1+2x)/(1+x)^2(x/(1+x))^k. T(n,k)=T(n-1,k-1)-3*T(n-1,k)+2*T(n-2,k-1)-3*T(n-2,k)+T(n-3,k-1)-T(n-3,k), T(0,0)=T(1,1)=T(2,2)=1, T(1,0)=0, T(2,0)=T(2,1)=-1, T(n,k)=0 if k<0 or if k>n. - Philippe Deléham, Jan 12 2014 T(0,0)=1, T(n,0)=(-1)^(n-1)*(n-1) for n>0, T(n,n)=1, T(n,k)=T(n-1,k-1)-T(n-1,k) for 0 n then return 0 fi; procname (n-1, k-1)-3*procname(n-1, k)+2*procname(n-2, k-1)-3*procname(n-2, k)+ procname(n-3, k-1)-procname(n-3, k) end proc: T(0, 0):= 1: T(1, 1):= 1: T(2, 2):= 1: T(1, 0):= 0: T(2, 0):= -1: T(2, 1):= -1: seq(seq(T(n, k), k=0..n), n=0..12); # Robert Israel, Jul 16 2019 MATHEMATICA (* The function RiordanArray is defined in A256893. *) RiordanArray[(1 + 2 #)/(1 + #)^2&, #/(1 + #)&, 12] // Flatten (* Jean-François Alcover, Jul 16 2019 *) CROSSREFS Sequence in context: A138110 A080233 A156644 * A114325 A101048 A204389 Adjacent sequences:  A097805 A097806 A097807 * A097809 A097810 A097811 KEYWORD easy,sign,tabl AUTHOR Paul Barry, Aug 25 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 23 19:45 EST 2020. Contains 331175 sequences. (Running on oeis4.)