login
A080232
Triangle T(n,k) of differences of pairs of consecutive terms of triangle A071919.
4
1, 1, -1, 1, 0, -1, 1, 1, -1, -1, 1, 2, 0, -2, -1, 1, 3, 2, -2, -3, -1, 1, 4, 5, 0, -5, -4, -1, 1, 5, 9, 5, -5, -9, -5, -1, 1, 6, 14, 14, 0, -14, -14, -6, -1, 1, 7, 20, 28, 14, -14, -28, -20, -7, -1, 1, 8, 27, 48, 42, 0, -42, -48, -27, -8, -1
OFFSET
0,12
COMMENTS
Row sums are 1,0,0,0,0,0, ... with g.f. 1 = (1-x)^0(1-2x)^0
(1,-1)-Pascal triangle; mirror image of triangle A112467. - Philippe Deléham, Nov 07 2006
Triangle T(n,k), read by rows, given by (1,0,0,0,0,0,0,0,0,...) DELTA (-1,2,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938. - Philippe Deléham, Nov 01 2011
LINKS
T. M. Brown, On the unimodality of convolutions of sequences of binomial coefficients, arXiv:1810.08235 [math.CO] (2018). See p. 8.
Pedro J. Miana, Hideyuki Ohtsuka, Natalia Romero, Sums of powers of Catalan triangle numbers, arXiv:1602.04347 [math.NT], 2016.
FORMULA
T(n, k) = binomial(n, k) + 2*Sum{j=1...k} (-1)^j binomial(n, k-j).
Sum_{k=0..n} T(n, k)*x^k = (1-x)*(1+x)^(n-1), for n >= 1. - Philippe Deléham, Sep 05 2005
T(n,k) = T(n-1,k-1) + T(n-1,k) with T(n,0)=1, T(n,n)=-1 for n > 0. - Philippe Deléham, Nov 01 2011
T(n,k) =binomial(n-1,k) - binomial(n-1,k-1), for n > 0. T(n,k) = Sum_{i=-k..k} (-1)^i*binomial(n-1,k+i)*binomial(n+1,k-i), for n >= k. T(n,k)=0, for n < k. - Mircea Merca, Apr 28 2012
G.f.: (-1+2*x*y)/(-1+x*y+x). - R. J. Mathar, Aug 11 2015
EXAMPLE
Rows begin
1;
1, -1;
1, 0, -1;
1, 1, -1, -1;
1, 2, 0, -2, -1;
1, 3, 2, -2, -3, -1;
1, 4, 5, 0, -5, -4, -1;
1, 5, 9, 5, -5, -9, -5, -1;
1, 6, 14, 14, 0, -14, -14, -6, -1;
1, 7, 20, 28, 14, -14, -28, -20, -7, -1;
1, 8, 27, 48, 42, 0, -42, -48, -27, -8, -1;
MAPLE
T(n, k):=piecewise(n=0, 1, n>0, binomial(n-1, k)-binomial(n-1, k-1)) # Mircea Merca, Apr 28 2012
CROSSREFS
Apart from initial term, same as A037012.
Sequence in context: A175929 A079627 A061398 * A008482 A037012 A112467
KEYWORD
easy,sign,tabl
AUTHOR
Paul Barry, Feb 09 2003
STATUS
approved