login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of connected components of the set-system with BII-number n.
36

%I #25 Jul 17 2024 08:47:59

%S 0,1,1,2,1,1,1,1,1,2,2,3,2,2,2,2,1,1,2,2,1,1,1,1,1,1,2,2,1,1,1,1,1,2,

%T 1,2,1,1,1,1,1,2,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

%U 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1

%N Number of connected components of the set-system with BII-number n.

%C A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every finite set of finite nonempty sets has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.

%H John Tyler Rascoe, <a href="/A326753/b326753.txt">Table of n, a(n) for n = 0..10000</a>

%H John Tyler Rascoe, <a href="/A326753/a326753_3.png">Log scatterplot of a(n)</a>, n=0..32906.

%F a(A072639(n)) = n. - _John Tyler Rascoe_, Jul 15 2024

%e The set-system {{1,2},{1,4},{3}} with BII-number 268 has two connected components, so a(268) = 2.

%t bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];

%t csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];

%t Table[Length[csm[bpe/@bpe[n]]],{n,0,100}]

%o (Python)

%o from sympy.utilities.iterables import connected_components

%o def bin_i(n): #binary indices

%o return([(i+1) for i, x in enumerate(bin(n)[2:][::-1]) if x =='1'])

%o def A326753(n):

%o E,a = [],[bin_i(k) for k in bin_i(n)]

%o m = len(a)

%o for i in range(m):

%o for j in a[i]:

%o for k in range(m):

%o if j in a[k]:

%o E.append((i,k))

%o return(len(connected_components((list(range(m)),E)))) # _John Tyler Rascoe_, Jul 16 2024

%Y Positions of 0's and 1's are A326749.

%Y Cf. A000120, A001187, A029931, A048143, A048793, A070939, A072639, A304716, A305078, A305079 (same for MM-numbers), A323818, A326031, A326702.

%Y Ranking sequences using BII-numbers: A309314 (hyperforests), A326701 (set partitions), A326703 (chains), A326704 (antichains), A326750 (clutters), A326751 (blobs), A326752 (hypertrees), A326754 (covers).

%K nonn,base

%O 0,4

%A _Gus Wiseman_, Jul 23 2019