OFFSET
1,4
COMMENTS
The vertex-connectivity of an integer partition is the minimum number of primes that must be divided out (and any parts then equal to 1 removed) so that the prime factorizations of the remaining parts form a disconnected (or empty) hypergraph.
LINKS
EXAMPLE
The a(14) = 7 integer partitions are (842), (8222), (77), (4442), (44222), (422222), (2222222).
The a(18) = 14 integer partitions:
(9,9), (16,2),
(8,8,2), (10,6,2),
(8,4,4,2), (9,3,3,3),
(4,4,4,4,2), (8,4,2,2,2),
(3,3,3,3,3,3), (4,4,4,2,2,2), (8,2,2,2,2,2),
(4,4,2,2,2,2,2),
(4,2,2,2,2,2,2,2),
(2,2,2,2,2,2,2,2,2).
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]], 2], And[OrderedQ[#], UnsameQ@@#, Length[Intersection@@s[[#]]]>0]&]}, If[c=={}, s, csm[Sort[Append[Delete[s, List/@c[[1]]], Union@@s[[c[[1]]]]]]]]];
vertConn[y_]:=If[Length[csm[primeMS/@y]]!=1, 0, Min@@Length/@Select[Subsets[Union@@primeMS/@y], Function[del, Length[csm[DeleteCases[DeleteCases[primeMS/@y, Alternatives@@del, {2}], {}]]]!=1]]];
Table[Length[Select[IntegerPartitions[n], vertConn[#]==1&]], {n, 20}]
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Dec 05 2018
STATUS
approved