login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A322391
Number of integer partitions of n with edge-connectivity 1.
5
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 3, 2, 3, 3, 9, 3, 14, 8, 17, 13, 35, 17, 49, 35, 67, 53, 114, 69
OFFSET
1,11
COMMENTS
The edge-connectivity of an integer partition is the minimum number of parts that must be removed so that the prime factorizations of the remaining parts form a disconnected (or empty) hypergraph.
EXAMPLE
The a(20) = 8 integer partitions:
(20),
(12,3,3,2), (9,6,3,2), (8,6,3,3),
(6,4,4,3,3),
(6,4,3,3,2,2), (6,3,3,3,3,2),
(6,3,3,2,2,2,2).
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]], 2], And[OrderedQ[#], UnsameQ@@#, Length[Intersection@@s[[#]]]>0]&]}, If[c=={}, s, csm[Sort[Append[Delete[s, List/@c[[1]]], Union@@s[[c[[1]]]]]]]]];
edgeConn[y_]:=If[Length[csm[primeMS/@y]]!=1, 0, Length[y]-Max@@Length/@Select[Union[Subsets[y]], Length[csm[primeMS/@#]]!=1&]];
Table[Length[Select[IntegerPartitions[n], edgeConn[#]==1&]], {n, 20}]
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Dec 05 2018
STATUS
approved