login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A322336
Heinz numbers of 2-edge-connected integer partitions.
13
9, 21, 25, 27, 39, 49, 57, 63, 65, 81, 87, 91, 111, 115, 117, 121, 125, 129, 133, 147, 159, 169, 171, 183, 185, 189, 203, 213, 235, 237, 243, 247, 259, 261, 267, 273, 289, 299, 301, 303, 305, 319, 321, 325, 333, 339, 343, 351, 361, 365, 371, 377, 387, 393, 399
OFFSET
1,1
COMMENTS
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
An integer partition is 2-edge-connected if the hypergraph of prime factorizations of its parts is connected and cannot be disconnected by removing any single part. For example (6,6,3,2) is 2-edge-connected but (6,3,2) is not.
EXAMPLE
The sequence of all 2-edge-connected integer partitions begins: (2,2), (4,2), (3,3), (2,2,2), (6,2), (4,4), (8,2), (4,2,2), (6,3), (2,2,2,2), (10,2), (6,4), (12,2), (9,3), (6,2,2), (5,5), (3,3,3), (14,2), (8,4), (4,4,2).
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]], 2], And[OrderedQ[#], UnsameQ@@#, Length[Intersection@@s[[#]]]>0]&]}, If[c=={}, s, csm[Sort[Append[Delete[s, List/@c[[1]]], Union@@s[[c[[1]]]]]]]]];
twoedQ[sys_]:=And[Length[csm[sys]]==1, And@@Table[Length[csm[Delete[sys, i]]]==1, {i, Length[sys]}]];
Select[Range[100], twoedQ[primeMS/@primeMS[#]]&]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Dec 04 2018
STATUS
approved