login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A218970 Number of connected cyclic conjugacy classes of subgroups of the symmetric group. 16
1, 1, 1, 1, 2, 1, 4, 1, 5, 3, 8, 2, 14, 3, 17, 11, 24, 10, 40, 16, 53, 35, 71, 43, 112, 68, 144, 112, 203, 152, 301, 219, 393, 342, 540, 474, 770, 661, 1022, 967, 1397, 1313, 1928, 1821, 2565, 2564, 3439, 3445, 4676, 4687, 6186, 6406, 8215, 8543, 10974, 11435 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

a(n) is also the number of connected partitions of n in the following sense. Given a partition of n, the vertices are the parts of the partition and two vertices are connected if and only if their gcd is greater than 1. We call a partition connected if the graph is connected.

LINKS

Table of n, a(n) for n=0..55.

Liam Naughton and Goetz Pfeiffer, Integer sequences realized by the subgroup pattern of the symmetric group, arXiv:1211.1911 [math.GR], 2012-2013.

Liam Naughton, CountingSubgroups.g

Liam Naughton and Goetz Pfeiffer, Tomlib, The GAP table of marks library

FORMULA

For n > 1, a(n) = A304716(n) - 1. - Gus Wiseman, Dec 03 2018

EXAMPLE

From Gus Wiseman, Dec 03 2018: (Start)

The a(12) = 14 connected integer partitions of 12:

  (12)  (6,6)   (4,4,4)  (3,3,3,3)  (4,2,2,2,2)  (2,2,2,2,2,2)

        (8,4)   (6,3,3)  (4,4,2,2)

        (9,3)   (6,4,2)  (6,2,2,2)

        (10,2)  (8,2,2)

(End)

MATHEMATICA

zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]], 2], And[Less@@#, GCD@@s[[#]]]>1&]}, If[c=={}, s, zsm[Sort[Append[Delete[s, List/@c[[1]]], LCM@@s[[c[[1]]]]]]]]];

Table[Length[Select[IntegerPartitions[n], Length[zsm[#]]==1&]], {n, 10}]

CROSSREFS

Cf. A018783, A200976, A286518, A286520, A290103, A304714, A304716, A305078, A305079, A322306, A322307.

Sequence in context: A331885 A298971 A328602 * A216952 A114326 A308175

Adjacent sequences:  A218967 A218968 A218969 * A218971 A218972 A218973

KEYWORD

nonn

AUTHOR

Liam Naughton, Nov 26 2012

EXTENSIONS

More terms from Gus Wiseman, Dec 03 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 19 07:24 EDT 2020. Contains 337178 sequences. (Running on oeis4.)