The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A218970 Number of connected cyclic conjugacy classes of subgroups of the symmetric group. 16
 1, 1, 1, 1, 2, 1, 4, 1, 5, 3, 8, 2, 14, 3, 17, 11, 24, 10, 40, 16, 53, 35, 71, 43, 112, 68, 144, 112, 203, 152, 301, 219, 393, 342, 540, 474, 770, 661, 1022, 967, 1397, 1313, 1928, 1821, 2565, 2564, 3439, 3445, 4676, 4687, 6186, 6406, 8215, 8543, 10974, 11435 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS a(n) is also the number of connected partitions of n in the following sense. Given a partition of n, the vertices are the parts of the partition and two vertices are connected if and only if their gcd is greater than 1. We call a partition connected if the graph is connected. LINKS Liam Naughton and Goetz Pfeiffer, Integer sequences realized by the subgroup pattern of the symmetric group, arXiv:1211.1911 [math.GR], 2012-2013. Liam Naughton, CountingSubgroups.g Liam Naughton and Goetz Pfeiffer, Tomlib, The GAP table of marks library FORMULA For n > 1, a(n) = A304716(n) - 1. - Gus Wiseman, Dec 03 2018 EXAMPLE From Gus Wiseman, Dec 03 2018: (Start) The a(12) = 14 connected integer partitions of 12:   (12)  (6,6)   (4,4,4)  (3,3,3,3)  (4,2,2,2,2)  (2,2,2,2,2,2)         (8,4)   (6,3,3)  (4,4,2,2)         (9,3)   (6,4,2)  (6,2,2,2)         (10,2)  (8,2,2) (End) MATHEMATICA zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]], 2], And[Less@@#, GCD@@s[[#]]]>1&]}, If[c=={}, s, zsm[Sort[Append[Delete[s, List/@c[[1]]], LCM@@s[[c[[1]]]]]]]]]; Table[Length[Select[IntegerPartitions[n], Length[zsm[#]]==1&]], {n, 10}] CROSSREFS Cf. A018783, A200976, A286518, A286520, A290103, A304714, A304716, A305078, A305079, A322306, A322307. Sequence in context: A331885 A298971 A328602 * A216952 A114326 A308175 Adjacent sequences:  A218967 A218968 A218969 * A218971 A218972 A218973 KEYWORD nonn AUTHOR Liam Naughton, Nov 26 2012 EXTENSIONS More terms from Gus Wiseman, Dec 03 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 21 20:28 EST 2022. Contains 350480 sequences. (Running on oeis4.)