OFFSET
1,5
COMMENTS
From Jeremy Gardiner, Mar 22 2015: (Start)
For n > 2 write n, n-1 in binary, then align bits from the left and take contiguous matching bits as a binary number.
For example:
n = 19 10011
n-1 = 18 10010
a(n) = 9 1001
Also arrange the positive integers as a binary tree rooted at 1 as shown:
1
|
2................../ \..................3
| |
4......../ \........5 6......../ \........7
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Each branch doubles the number above at the left fork or doubles and adds 1 at the right fork. Then for n > 2, a(n) is the greatest common ancestor of n and n-1, a(n) = gca(n,n-1).
(End)
From David James Sycamore, Mar 07 2023: (Start)
The following identical sequences, {b(n)} and {c(n)}, are the same as a(n+1) for n >= 1.
b(1) = 1, then reverse the conditions in Name: b(2k) = k, b(2k+1) = b(k).
c(1) = 1, then if c(n) is a first occurrence, c(n+1) = c(c(n)), else if c(n) has occurred previously, c(n+1) = n - c(n-1).
These are fractal sequences (b(2m+1) = c(2m+1), m >= 1, recovers the originals). Also {b(n)} and {c(n)} interleave A000027 with the present sequence.
(End)
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..1000
FORMULA
a((n+1)/2) = A028310(n) if n is odd and a(n/2) = a(n) if n is even; thus this is a fractal sequence. - Robert G. Wilson v, May 23 2006; corrected by Clark Kimberling, Jul 07 2007
a(n) = A025480(n) + A036987(n) = (n/2^A007814(n) - 1)/2 + (n == 2^A007814(n)). - Ralf Stephan, Aug 21 2013
Numbers m for which a(m) = 1 are A000079(m) and A007283(m), a(2^m + 1) = 2^(m-1); m >= 1. - David James Sycamore, Mar 07 2023
EXAMPLE
If n is a power of 2 then k=1.
MAPLE
a:=array(0..200); a[1]:=1; M:=200; for n from 2 to M do if n mod 2 = 1 then a[n]:=(n-1)/2; else a[n]:=a[n/2]; fi; od: [seq(a[n], n=1..M)];
MATHEMATICA
a[1] = 1; a[n_] := a[n] = If[OddQ@n, (n - 1)/2, a[n/2]]; Array[a, 84] (* Robert G. Wilson v, May 23 2006 *)
PROG
(PARI) a(n)=(n/2^valuation(n, 2)-1)/2+if(n==2^valuation(n, 2), 1, 0) /* Ralf Stephan, Aug 21 2013 */
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, May 22 2006; definition corrected May 23 2006
STATUS
approved