login
A101277
Number of partitions of 2n in which all odd parts occur with multiplicity 2. There is no restriction on the even parts.
3
1, 2, 3, 6, 10, 16, 25, 38, 57, 84, 121, 172, 243, 338, 465, 636, 862, 1158, 1546, 2050, 2702, 3542, 4616, 5986, 7729, 9932, 12707, 16196, 20563, 26010, 32788, 41194, 51591, 64418, 80195, 99558, 123269, 152226, 187514, 230434, 282519, 345596, 421844, 513834
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
This is also A080054 times 1/Product_{k>=1} (1 - x^(2k)).
There are no partitions of 2n+1 in which all odd parts occur with multiplicity 2. - Michael Somos, Oct 27 2008
LINKS
Cristina Ballantine, Mircea Merca, Jacobi's Four and Eight Squares Theorems and Partitions into Distinct Parts, Mediterranean Journal of Mathematics (2019) Vol. 16, No. 2, 26.
Noureddine Chair, Partition Identities From Partial Supersymmetry, arXiv:hep-th/0409011v1, 2004.
Brian Drake, Limits of areas under lattice paths, Discrete Math. 309 (2009), no. 12, 3936-3953.
Eric Weisstein's World of Mathematics, q-Pochhammer Symbol, Ramanujan Theta Functions
FORMULA
Euler transform of period 4 sequence [2, 0, 2, 1, ...]. - Michael Somos, Feb 10 2005
G.f.: (1/theta_4(0, x))*Product_{k>0}(1+x^(2k)) = theta_4(0, x^2)/theta_4(0, x)*Product_{k>0}(1-x^(2k)) = 1/Product_{k>0} ((1-x^(2k-1))^2 * (1-x^(4k))).
Expansion of 1 / (psi(-x) * chi(-x)) in powers of x where psi(), chi() are Ramanujan theta functions. - Michael Somos, Oct 27 2008
Expansion of q^(1/12) * eta(q^2)^2 / (eta(q)^2 * eta(q^4)) in powers of q. - Michael Somos, Oct 27 2008
a(n) ~ sqrt(5) * exp(Pi*sqrt(5*n/6)) / (8*sqrt(3)*n). - Vaclav Kotesovec, Aug 30 2015
G.f.: 2/((x; x)_inf * (-1; -x)_inf), where (a; q)_inf is the q-Pochhammer symbol. - Vladimir Reshetnikov, Nov 22 2016
Expansion of phi(-x^2) / f(-x)^2 = chi(x) / f(-x) = 1 / (chi(-x)^2 * f(-x^4)) = f(-x^4) / psi(-x)^2 = psi(-x) / chi(-x) = chi(x)^2 / psi(-x^2) in powers of x. - Michael Somos, Nov 22 2016
EXAMPLE
G.f. = 1 + 2*x + 3*x^2 + 6*x^3 + 10*x^4 + 16*x^5 + 25*x^6 + 38*x^7 + 57*x^8 + ...
G.f. = 1/q + 2*q^11 + 3*q^23 + 6*q^35 + 10*q^47 + 16*q^59 + 25*q^71 + ...
E.g. 12 = 10 + 2 = 10 + 1 + 1 = 8 + 4 = 8 + 2 + 2 = 8 + 2 + 1 + 1 = 6 + 6 = 6 + 4 + 2 = 6 + 4 + 1 + 1 = 6 + 3 + 3 = 6 + 2 + 2 + 2 = 6 + 2 + 2 + 1 + 1 = 5 + 5 + 2 = 5 + 5 + 1 + 1 = 4 + 4 + 4 = 4 + 4 + 2 + 2 = 4 + 4 + 2 + 1 + 1 = 4 + 3 + 3 + 2 = 4 + 3 + 3 + 1 + 1 = 4 + 2 + 2 + 2 + 2 = 4 + 2 + 2 + 2 + 1 + 1 = 3 + 3 + 2 + 2 + 2 = 3 + 3 + 2 + 2 + 1 + 1 = 2 + 2 + 2 + 2 + 2 + 2 = 2 + 2 + 2 + 2 + 2 + 1 + 1.
MAPLE
series(product(1/((1-x^(2*k-1))^2*(1-x^(4*k))), k=1..100), x=0, 100);
MATHEMATICA
nmax=50; CoefficientList[Series[Product[1/((1-x^(2*k-1))^2 * (1-x^(4*k))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 30 2015 *)
(2/(QPochhammer[x] QPochhammer[-1, -x]) + O[x]^45)[[3]] (* Vladimir Reshetnikov, Nov 22 2016 *)
a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, x^2] / QPochhammer[ x]^2, {x, 0, n}]; (* Michael Somos, Nov 22 2016 *)
a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x^2] / QPochhammer[ x], {x, 0, n}]; (* Michael Somos, Nov 22 2016 *)
a[ n_] := SeriesCoefficient[ 1 / (QPochhammer[ x, -x] QPochhammer[ x]), {x, 0, n}]; (* Michael Somos, Nov 22 2016 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 / (eta(x + A)^2 * eta(x^4 + A)), n))}; /* Michael Somos, Feb 10 2005 */
CROSSREFS
KEYWORD
nonn
AUTHOR
Noureddine Chair, Dec 20 2004; revised Jan 05 2005
STATUS
approved