|
|
A262984
|
|
Expansion of f(-x^2, -x^10) / f(-x, -x) in powers of x where f(, ) is Ramanujan's general theta function.
|
|
1
|
|
|
1, 2, 3, 6, 10, 16, 26, 40, 60, 90, 131, 188, 268, 376, 522, 720, 983, 1330, 1790, 2390, 3170, 4184, 5488, 7160, 9300, 12020, 15466, 19822, 25300, 32168, 40760, 51464, 64763, 81250, 101620, 126726, 157604, 195472, 241810, 298400, 367340, 451156, 552867, 676030
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
|
|
REFERENCES
|
Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, p. 6, 7th equation.
|
|
LINKS
|
|
|
FORMULA
|
Expansion of psi(x^6) * phi(-x^2) / f(-x)^2 in powers of x where phi(), psi(), f() are Ramanujan theta functions.
Expansion of q^(-2/3) * eta(q^2)^2 * eta(q^12)^2 / (eta(q)^2 * eta(q^4) * eta(q^6)) in powers of q.
Euler transform of period 12 sequence [ 2, 0, 2, 1, 2, 1, 2, 1, 2, 0, 2, 0, ...].
a(n) ~ 5^(1/4) * exp(sqrt(5*n/6)*Pi) / (2^(13/4) * 3^(3/4) * n^(3/4)). - Vaclav Kotesovec, Oct 06 2015
G.f.: Sum_{k>=0} x^k * (Product_{i=1..k} 1 + x^(2*i)) / Product_{i=1..2*k+1} 1 - x^i). [Ramanujan] - Michael Somos, Nov 18 2015
|
|
EXAMPLE
|
G.f. = 1 + 2*x + 3*x^2 + 6*x^3 + 10*x^4 + 16*x^5 + 26*x^6 + 40*x^7 + ...
G.f. = q^2 + 2*q^5 + 3*q^8 + 6*q^11 + 10*q^14 + 16*q^17 + 26*q^20 + ...
|
|
MATHEMATICA
|
a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, x^3] EllipticTheta[ 4, 0, x^2] / (2 x^(3/4) QPochhammer[ x]^2), {x, 0, n}];
nmax=60; CoefficientList[Series[Product[(1-x^(12*k)) * (1+x^(6*k)) * (1+x^(2*k-1)) / (1-x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 06 2015 *)
|
|
PROG
|
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^12 + A)^2 / (eta(x + A)^2 * eta(x^4 + A) * eta(x^6 + A)), n))};
(PARI) q='q+O('q^99); Vec(eta(q^2)^2*eta(q^12)^2/(eta(q)^2*eta(q^4)*eta(q^6))) \\ Altug Alkan, Mar 19 2018
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|