login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A023655
Convolution of (F(2), F(3), F(4), ...) and A023533.
1
1, 2, 3, 6, 10, 16, 26, 42, 68, 111, 180, 291, 471, 762, 1233, 1995, 3228, 5223, 8451, 13675, 22127, 35802, 57929, 93731, 151660, 245391, 397051, 642442, 1039493, 1681935, 2721428, 4403363, 7124791
OFFSET
1,2
LINKS
FORMULA
a(n) = Sum_{k=0..n-1} Fibonacci(k+2) * A023533(n-k), n >= 1. - G. C. Greubel, Jul 16 2022
MATHEMATICA
Table[Sum[Fibonacci[m+1 -Binomial[j+3, 3]], {j, 0, n}], {n, 0, 5}, {m, Binomial[n+3, 3] +1, Binomial[n+4, 3]}]//Flatten (* G. C. Greubel, Jul 16 2022 *)
PROG
(Magma)
A023533:= func< n | Binomial(Floor((6*n-1)^(1/3)) +2, 3) ne n select 0 else 1 >;
[(&+[Fibonacci(k+2)*A023533(n-k): k in [0..n-1]]): n in [1..50]]; // G. C. Greubel, Jul 16 2022
(SageMath)
def A023655(n, k): return sum(fibonacci(k+1-binomial(j+3, 3)) for j in (0..n))
flatten([[A023655(n, k) for k in (binomial(n+3, 3)+1..binomial(n+4, 3))] for n in (0..5)]) # G. C. Greubel, Jul 16 2022
CROSSREFS
Essentially the same as A023613.
Sequence in context: A262984 A201077 A355383 * A354210 A023561 A243735
KEYWORD
nonn
STATUS
approved