Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Jul 08 2024 08:53:57
%S 1,2,3,6,10,16,26,42,68,111,180,291,471,762,1233,1995,3228,5223,8451,
%T 13675,22127,35802,57929,93731,151660,245391,397051,642442,1039493,
%U 1681935,2721428,4403363,7124791
%N Convolution of (F(2), F(3), F(4), ...) and A023533.
%H G. C. Greubel, <a href="/A023655/b023655.txt">Table of n, a(n) for n = 1..4700</a>
%F a(n) = Sum_{k=0..n-1} Fibonacci(k+2) * A023533(n-k), n >= 1. - _G. C. Greubel_, Jul 16 2022
%t Table[Sum[Fibonacci[m+1 -Binomial[j+3,3]], {j,0,n}], {n,0,5}, {m, Binomial[n+3,3] +1, Binomial[n+4,3]}]//Flatten (* _G. C. Greubel_, Jul 16 2022 *)
%o (Magma)
%o A023533:= func< n | Binomial(Floor((6*n-1)^(1/3)) +2, 3) ne n select 0 else 1 >;
%o [(&+[Fibonacci(k+2)*A023533(n-k): k in [0..n-1]]): n in [1..50]]; // _G. C. Greubel_, Jul 16 2022
%o (SageMath)
%o def A023655(n, k): return sum(fibonacci(k+1-binomial(j+3,3)) for j in (0..n))
%o flatten([[A023655(n, k) for k in (binomial(n+3,3)+1..binomial(n+4,3))] for n in (0..5)]) # _G. C. Greubel_, Jul 16 2022
%Y Essentially the same as A023613.
%Y Cf. A000045, A023533.
%K nonn
%O 1,2
%A _Clark Kimberling_