login
A355383
Number of pairs (y, v), where y is a partition of n and v is a sub-multiset of y whose cardinality equals the number of distinct parts in y.
7
1, 1, 2, 3, 6, 10, 16, 26, 42, 64, 100, 150, 224, 330, 482, 697, 999, 1418, 1996, 2794, 3879, 5355, 7343, 10018, 13583, 18338, 24618, 32917, 43790, 58043, 76591, 100716, 131906, 172194, 223966, 290423, 375318, 483668, 621368, 796138, 1017146
OFFSET
0,3
COMMENTS
If a partition is regarded as an arrow from the number of parts to the number of distinct parts, this sequence counts composable containments of partitions.
EXAMPLE
The a(0) = 1 through a(5) = 10 pairs:
()() (1)(1) (2)(2) (3)(3) (4)(4) (5)(5)
(11)(1) (21)(21) (31)(31) (41)(41)
(111)(1) (22)(2) (32)(32)
(211)(11) (311)(11)
(211)(21) (311)(31)
(1111)(1) (221)(21)
(221)(22)
(2111)(11)
(2111)(21)
(11111)(1)
MATHEMATICA
Table[Sum[Length[Union[Subsets[y, {Length[Union[y]]}]]], {y, IntegerPartitions[n]}], {n, 0, 15}]
CROSSREFS
With multiplicity we have A339006.
The version for compositions is A355384.
The homogeneous version w/o containment is A355385, compositions A355388.
A001970 counts multiset partitions of partitions.
A063834 counts partitions of each part of a partition.
Sequence in context: A101277 A262984 A201077 * A023655 A354210 A023561
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jul 02 2022
STATUS
approved