OFFSET
0,4
COMMENTS
Also the number of ways to partition a strict integer partition of n into two unordered blocks. - Gus Wiseman, Dec 31 2019
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1000
FORMULA
G.f.: 1/2*(1+Product_{k>0} (1+2*x^k)). - Vladeta Jovovic, Jun 24 2003
G.f.: 1 + sum(n>=1, 2^(n-1)*q^(n*(n+1)/2) / prod(k=1..n, 1-q^k ) ). [Joerg Arndt, Jan 20 2014]
a(n) ~ c^(1/4) * exp(2*sqrt(c*n)) / (4*sqrt(3*Pi)*n^(3/4)), where c = -polylog(2, -2) = A266576 = 1.436746366883680946362902023893583354... - Vaclav Kotesovec, Sep 22 2019
EXAMPLE
a(6)=9 since 6 can be written as 1+2+3, 1+3+2, 1+5, 2+3+1, 2+4, 3+2+1, 4+2, 5+1, or 6, but not for example 1+4+1 (which does not have distinct terms) nor 2+1+3 (which is not unimodal).
From Joerg Arndt, Mar 25 2014: (Start)
The a(10) = 33 such compositions of 10 are:
01: [ 1 2 3 4 ]
02: [ 1 2 4 3 ]
03: [ 1 2 7 ]
04: [ 1 3 4 2 ]
05: [ 1 3 6 ]
06: [ 1 4 3 2 ]
07: [ 1 4 5 ]
08: [ 1 5 4 ]
09: [ 1 6 3 ]
10: [ 1 7 2 ]
11: [ 1 9 ]
12: [ 2 3 4 1 ]
13: [ 2 3 5 ]
14: [ 2 4 3 1 ]
15: [ 2 5 3 ]
16: [ 2 7 1 ]
17: [ 2 8 ]
18: [ 3 4 2 1 ]
19: [ 3 5 2 ]
20: [ 3 6 1 ]
21: [ 3 7 ]
22: [ 4 3 2 1 ]
23: [ 4 5 1 ]
24: [ 4 6 ]
25: [ 5 3 2 ]
26: [ 5 4 1 ]
27: [ 6 3 1 ]
28: [ 6 4 ]
29: [ 7 2 1 ]
30: [ 7 3 ]
31: [ 8 2 ]
32: [ 9 1 ]
33: [ 10 ]
(End)
MAPLE
b:= proc(n, i) option remember; `if`(n>i*(i+1)/2, 0, `if`(n=0, 1,
expand(b(n, i-1) +`if`(i>n, 0, x*b(n-i, i-1)))))
end:
a:= n->(p->add(coeff(p, x, i)*ceil(2^(i-1)), i=0..degree(p)))(b(n$2)):
seq(a(n), n=0..100); # Alois P. Heinz, Mar 25 2014
MATHEMATICA
b[n_, i_] := b[n, i] = If[n > i*(i + 1)/2, 0, If[n == 0, 1, Expand[b[n, i - 1] + If[i > n, 0, x*b[n - i, i - 1]]]]]; a[n_] := Function[{p}, Sum[Coefficient[p, x, i]*Ceiling[2^(i - 1)], {i, 0, Exponent[p, x]}]][b[n, n]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Jan 16 2015, after Alois P. Heinz *)
Table[If[n==0, 1, Sum[2^(Length[ptn]-1), {ptn, Select[IntegerPartitions[n], UnsameQ@@#&]}]], {n, 0, 15}] (* Gus Wiseman, Dec 31 2019 *)
PROG
(PARI) N=66; q='q+O('q^N); Vec( 1 + sum(n=1, N, 2^(n-1)*q^(n*(n+1)/2) / prod(k=1, n, 1-q^k ) ) ) \\ Joerg Arndt, Mar 25 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
Henry Bottomley, Jul 04 2002
STATUS
approved