login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A091916
Maximum of odd products of partitions of n.
2
1, 1, 1, 3, 3, 5, 9, 9, 15, 27, 27, 45, 81, 81, 135, 243, 243, 405, 729, 729, 1215, 2187, 2187, 3645, 6561, 6561, 10935, 19683, 19683, 32805, 59049, 59049, 98415, 177147, 177147, 295245, 531441, 531441, 885735, 1594323, 1594323, 2657205, 4782969, 4782969
OFFSET
0,4
FORMULA
For n>5, a(n+3) = 3a(n) (conjectured). - Ralf Stephan, Dec 02 2004
From Ron Knott, Mar 18 2020: (Start)
a(3*n) = 3^n; a(3*n+1) = a(3*n); a(3*n+2) = 5*3^(n-1) for n >= 1.
G.f.: -(2*x^5+x^2+x+1)/(3*x^3-1). (End)
EXAMPLE
The partitions of 5 are 5, 41, 32, 311, 221, 2111, 11111, with products 5, 4, 6, 3, 4, 2, 1 and the maximal odd product is 5.
MATHEMATICA
first Needs["DiscreteMath`Combinatorica`"], then f[n_] := Max[ Select[ Apply[ Times, Partitions[n], 2], OddQ[ # ] &]]; Table[ f[n], {n, 1, 43}] (* Robert G. Wilson v, Feb 12 2004 *)
Table[Max[(Times @@ #) & /@
IntegerPartitions[n, All, Range[1, n, 2]]], {n, 1, 43}]. (* Ron Knott, Mar 18 2020 *)
CROSSREFS
Sequence in context: A179437 A136791 A213933 * A102437 A319794 A072706
KEYWORD
nonn
AUTHOR
Jon Perry, Feb 12 2004
EXTENSIONS
More terms from Robert G. Wilson v, Feb 12 2004
a(0)=1 prepended by Alois P. Heinz, Mar 18 2020
STATUS
approved