OFFSET
0,2
COMMENTS
Binomial transform of 1, 1, 13, 13, 169, 169, ....
The inverse binomial transform of 2^n*c(n), where c(n) is the solution to c(n) = c(n-1) + k*c(n-2), a(0)=1, a(1)=1 is 1, 1, 4k+1, 4k+1, (4k+1)^2, ...
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (2,12).
FORMULA
G.f.: 1/(1-2*x-12*x^2).
a(n) = ((1+sqrt(13))*(1+sqrt(13))^n - (1-sqrt(13))*(1-sqrt(13))^n) /(2*sqrt(13)).
a(n) = Sum_{k=0..floor(n/2)} C(n+1,2*k+1) * 13^k. - Paul Barry, Jan 15 2007
MAPLE
a := proc(n) option remember: if n=0 then 1 elif n=1 then 2 elif n>=2 then 2*procname(n-1) + 12*procname(n-2) fi; end: # Muniru A Asiru, Jan 31 2018
MATHEMATICA
LinearRecurrence[{2, 12}, {1, 2}, 30] (* or *) With[{s=Sqrt[13]}, Table[ Simplify[ -(((13+s)((1-s)^n-(1+s)^n))/(26(1+s)))], {n, 30}]] (* Harvey P. Dale, May 25 2013 *)
PROG
(Sage) [lucas_number1(n, 2, -12) for n in range(1, 30)] # Zerinvary Lajos, Apr 22 2009
(PARI) my(x='x+O('x^30)); Vec(1/(1-2*x-12*x^2)) \\ G. C. Greubel, Jan 30 2018
(Magma) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!(1/(1-2*x-12*x^2))) // G. C. Greubel, Jan 30 2018
(GAP) a := [1, 2];; for n in [3..30] do a[n] := 2*a[n-1] + 12*a[n-2]; od; a; # Muniru A Asiru, Jan 31 2018
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Feb 12 2004
STATUS
approved