login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A091914
a(n) = 2*a(n-1) + 12*a(n-2).
18
1, 2, 16, 56, 304, 1280, 6208, 27776, 130048, 593408, 2747392, 12615680, 58200064, 267788288, 1233977344, 5681414144, 26170556416, 120518082560, 555082842112, 2556382674944, 11773759455232, 54224111009792, 249733335482368
OFFSET
0,2
COMMENTS
Binomial transform of 1, 1, 13, 13, 169, 169, ....
The inverse binomial transform of 2^n*c(n), where c(n) is the solution to c(n) = c(n-1) + k*c(n-2), a(0)=1, a(1)=1 is 1, 1, 4k+1, 4k+1, (4k+1)^2, ...
FORMULA
a(n) = A000079(n)*A006130(n).
G.f.: 1/(1-2*x-12*x^2).
a(n) = ((1+sqrt(13))*(1+sqrt(13))^n - (1-sqrt(13))*(1-sqrt(13))^n) /(2*sqrt(13)).
a(n) = Sum_{k=0..floor(n/2)} C(n+1,2*k+1) * 13^k. - Paul Barry, Jan 15 2007
MAPLE
a := proc(n) option remember: if n=0 then 1 elif n=1 then 2 elif n>=2 then 2*procname(n-1) + 12*procname(n-2) fi; end: # Muniru A Asiru, Jan 31 2018
MATHEMATICA
LinearRecurrence[{2, 12}, {1, 2}, 30] (* or *) With[{s=Sqrt[13]}, Table[ Simplify[ -(((13+s)((1-s)^n-(1+s)^n))/(26(1+s)))], {n, 30}]] (* Harvey P. Dale, May 25 2013 *)
PROG
(Sage) [lucas_number1(n, 2, -12) for n in range(1, 30)] # Zerinvary Lajos, Apr 22 2009
(PARI) my(x='x+O('x^30)); Vec(1/(1-2*x-12*x^2)) \\ G. C. Greubel, Jan 30 2018
(Magma) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!(1/(1-2*x-12*x^2))) // G. C. Greubel, Jan 30 2018
(GAP) a := [1, 2];; for n in [3..30] do a[n] := 2*a[n-1] + 12*a[n-2]; od; a; # Muniru A Asiru, Jan 31 2018
CROSSREFS
Sequence in context: A225051 A033431 A107610 * A123791 A293620 A206980
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Feb 12 2004
STATUS
approved