OFFSET
0,4
COMMENTS
Absolute values of (reduced) numerators of Taylor series for the Gudermannian function gd(x)= 2*arctan(exp(x))-Pi/2. - Tamas Kalmar-Nagy (integers(AT)kalmarnagy.com), Sep 28 2007
REFERENCES
Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 33, equations 33:14:14 - 33:14:15 at page 318.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..100
J. S. Robertson, Gudermann and the Simple Pendulum, The College Mathematics Journal, Vol. 28 (1997), No. 4, pp. 271-276.
Eric Weisstein's World of Mathematics, Gudermannian.
Eric Weisstein's World of Mathematics, Inverse Gudermannian.
FORMULA
E.g.f.: sech(x) or gd(x). - Tamas Kalmar-Nagy (integers(AT)kalmarnagy.com), Sep 28 2007
EXAMPLE
log(tan(x)+1/cos(x)) = x + 1/6*x^3 + 1/24*x^5 + 61/5040*x^7 + 277/72576*x^9 + ...
gd(x) = x - 1/6*x^3 + 1/24*x^5 - 61/5040*x^7 + 277/72576*x^9 + ....
MATHEMATICA
Series[ArcTan[Sinh[x]], {x, 0, 30}] // CoefficientList[#, x]& // DeleteCases[#, 0]& // Numerator // Abs (* Jean-François Alcover, Feb 24 2014 *)
a[ n_] := (-1)^n Numerator @ SeriesCoefficient[ Gudermannian @ x, {x, 0, 2 n + 1}]; (* Michael Somos, Feb 24 2014 *)
PROG
(PARI) a(n)=local(X); if(n<0, 0, X=x+O(x^(2*n+2)); numerator(polcoeff(log(tan(X)+1/cos(X)), 2*n+1)))
CROSSREFS
KEYWORD
nonn,frac,easy
AUTHOR
Michael Somos, Feb 12 2004
EXTENSIONS
More terms from Vincenzo Librandi, Feb 26 2014
STATUS
approved