The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A091912 Numerators of Taylor series for log(tan(x)+1/cos(x)). 4
 1, 1, 1, 61, 277, 50521, 41581, 199360981, 228135437, 2404879675441, 14814847529501, 69348874393137901, 238685140977801337, 4087072509293123892361, 454540704683713199807, 441543893249023104553682821, 2088463430347521052196056349 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Absolute values of (reduced) numerators of Taylor series for the Gudermannian function gd(x)= 2*arctan(exp(x))-Pi/2. - Tamas Kalmar-Nagy (integers(AT)kalmarnagy.com), Sep 28 2007 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..100 J. S. Robertson, Gudermann and the Simple Pendulum, The College Mathematics Journal, Vol. 28 (1997), No. 4, pp. 271-276. Eric Weisstein's World of Mathematics, Gudermannian Eric Weisstein's World of Mathematics, Inverse Gudermannian FORMULA E.g.f.: sech x or gd x. - Tamas Kalmar-Nagy (integers(AT)kalmarnagy.com), Sep 28 2007 EXAMPLE log(tan(x)+1/cos(x)) = x + 1/6*x^3 + 1/24*x^5 + 61/5040*x^7 + 277/72576*x^9 + ... gd(x) = x - 1/6*x^3 + 1/24*x^5 - 61/5040*x^7 + 277/72576*x^9 + .... MATHEMATICA Series[ArcTan[Sinh[x]], {x, 0, 30}] // CoefficientList[#, x]& // DeleteCases[#, 0]& // Numerator // Abs (* Jean-François Alcover, Feb 24 2014 *) a[ n_] := (-1)^n Numerator @ SeriesCoefficient[ Gudermannian @ x, {x, 0, 2 n + 1}]; (* Michael Somos, Feb 24 2014 *) PROG (PARI) a(n)=local(X); if(n<0, 0, X=x+O(x^(2*n+2)); numerator(polcoeff(log(tan(X)+1/cos(X)), 2*n+1))) CROSSREFS Cf. A000364, A028296. Sequence in context: A252803 A302282 A140854 * A142605 A142133 A302730 Adjacent sequences:  A091909 A091910 A091911 * A091913 A091914 A091915 KEYWORD nonn,frac,easy AUTHOR Michael Somos, Feb 12 2004 EXTENSIONS More terms from Vincenzo Librandi, Feb 26 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 25 11:32 EST 2020. Contains 338623 sequences. (Running on oeis4.)