The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A091917 Coefficient array of polynomials (z-1)^n-1. 4
 1, -2, 1, 0, -2, 1, -2, 3, -3, 1, 0, -4, 6, -4, 1, -2, 5, -10, 10, -5, 1, 0, -6, 15, -20, 15, -6, 1, -2, 7, -21, 35, -35, 21, -7, 1, 0, -8, 28, -56, 70, -56, 28, -8, 1, -2, 9, -36, 84, -126, 126, -84, 36, -9, 1, 0, -10, 45, -120, 210, -252, 210, -120, 45, -10, 1, -2, 11, -55, 165, -330, 462, -462, 330, -165, 55, -11, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS The first element has been changed to 1 to produce an invertible matrix. Alternatively, this is the coefficient array for the polynomials P(z,n) = Product_{j=0..n-1} (z-(1+w(n)^j)) where w(n) = e^(2*Pi*i/n), i=sqrt(-1). The row entries determine interesting recurrences. For instance, a(n) = 4a(n-1) + 6a(n-2) + 4a(n-3), a(0)=a(1)=a(2)=1, gives A038503. Sequences of the form a(n) = Sum_{k=0..n} (binomial(n,k) if k mod m = r, otherwise 0), for r=0..m-1, result. Equivalently, a(n) = Sum_{j=0..n-1} 2^n*(cos(Pi*j/m))^n*cos((n-2r)Pi*j/m)/m, r=0..m-1. These include A024493, A024494, A024495, A038503, A038504, A038505. The inverse matrix is A091918. Triangle T(n,k), 0 <= k <= n, read by rows given by [ -2, 2, 1/2, -1/2, 0, 0, 0, 0, 0, ...] DELTA [1, 0, -1/2, 1/2, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Oct 11 2007 LINKS Alois P. Heinz, Rows n = 0..140, flattened FORMULA T(n,k) = T(n-1,k-1) + T(n-2,k) - T(n-2,k-1), T(0,0) = T(1,1) = T(2,2) = 1, T(1,0) = T(2,1) = -2, T(2,0) = 0, T(n,k) = 0 for k > n or for k < 0. - Philippe Deléham, May 23 2015 G.f.: (1-2*x-x^2+x^2*y)/((x-1)*(-x+x*y-1)). - R. J. Mathar, Aug 11 2015 EXAMPLE Rows begin:   { 1},   {-2,  1},   { 0, -2,  1},   {-2,  3, -3,  1},   { 0, -4,  6, -4,  1},   ... MAPLE T:= n-> `if`(n=0, 1, (p-> seq(coeff(p, z, i), i=0..n))((z-1)^n-1)): seq(T(n), n=0..12);  # Alois P. Heinz, May 23 2015 MATHEMATICA Table[If[n == 0, 1, CoefficientList[(z-1)^n-1, z]], {n, 0, 12}] // Flatten (* Jean-François Alcover, Apr 08 2016 *) PROG (PARI) row(n) = if (n==0, 1, Vecrev((z-1)^n-1)); \\ Michel Marcus, May 23 2015 CROSSREFS Sequence in context: A246369 A036261 A140575 * A025657 A025686 A215345 Adjacent sequences:  A091914 A091915 A091916 * A091918 A091919 A091920 KEYWORD sign,tabl AUTHOR Paul Barry, Feb 13 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 25 11:32 EST 2020. Contains 338623 sequences. (Running on oeis4.)