login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A091919
Expansion of 1/((1-2*x)*(1-x^2)^2).
2
1, 2, 6, 12, 27, 54, 112, 224, 453, 906, 1818, 3636, 7279, 14558, 29124, 58248, 116505, 233010, 466030, 932060, 1864131, 3728262, 7456536, 14913072, 29826157, 59652314, 119304642, 238609284, 477218583, 954437166, 1908874348, 3817748696
OFFSET
0,2
FORMULA
a(n) = 2^(n+4)/9 + (3*n+8)*(-1)^n/36 - (n+4)/4.
a(n) = Sum_{k=0..floor(n/2)} A000975(n-2*k+1). - Paul Barry, Jan 18 2009
MATHEMATICA
CoefficientList[Series[1/((1 - 2*x)*(1 - x^2)^2), {x, 0, 50}], x] (* G. C. Greubel, Oct 11 2017 *)
LinearRecurrence[{2, 2, -4, -1, 2}, {1, 2, 6, 12, 27}, 40] (* Harvey P. Dale, Oct 23 2019 *)
PROG
(PARI) for(n=0, 50, print1(2^(n+4)/9 + (3*n+8)*(-1)^n/36 - (n+4)/4, ", ")) \\ G. C. Greubel, Oct 11 2017
(Magma) [2^(n+4)/9 + (3*n+8)*(-1)^n/36 - (n+4)/4: n in [0..30]]; // G. C. Greubel, Oct 11 2017
CROSSREFS
Sequence in context: A364423 A289443 A029863 * A059078 A335712 A356465
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Feb 13 2004
STATUS
approved