Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Sep 08 2022 08:45:13
%S 1,2,6,12,27,54,112,224,453,906,1818,3636,7279,14558,29124,58248,
%T 116505,233010,466030,932060,1864131,3728262,7456536,14913072,
%U 29826157,59652314,119304642,238609284,477218583,954437166,1908874348,3817748696
%N Expansion of 1/((1-2*x)*(1-x^2)^2).
%H G. C. Greubel, <a href="/A091919/b091919.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (2,2,-4,-1,2).
%F a(n) = 2^(n+4)/9 + (3*n+8)*(-1)^n/36 - (n+4)/4.
%F a(n) = Sum_{k=0..floor(n/2)} A000975(n-2*k+1). - _Paul Barry_, Jan 18 2009
%t CoefficientList[Series[1/((1 - 2*x)*(1 - x^2)^2), {x, 0, 50}], x] (* _G. C. Greubel_, Oct 11 2017 *)
%t LinearRecurrence[{2,2,-4,-1,2},{1,2,6,12,27},40] (* _Harvey P. Dale_, Oct 23 2019 *)
%o (PARI) for(n=0, 50, print1(2^(n+4)/9 + (3*n+8)*(-1)^n/36 - (n+4)/4, ", ")) \\ _G. C. Greubel_, Oct 11 2017
%o (Magma) [2^(n+4)/9 + (3*n+8)*(-1)^n/36 - (n+4)/4: n in [0..30]]; // _G. C. Greubel_, Oct 11 2017
%K easy,nonn
%O 0,2
%A _Paul Barry_, Feb 13 2004