login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A289443
a(0) = 2, a(1) = 6; thereafter a(n) = 3*n^2.
1
2, 6, 12, 27, 48, 75, 108, 147, 192, 243, 300, 363, 432, 507, 588, 675, 768, 867, 972, 1083, 1200, 1323, 1452, 1587, 1728, 1875, 2028, 2187, 2352, 2523, 2700, 2883, 3072, 3267, 3468, 3675, 3888, 4107, 4332, 4563, 4800, 5043, 5292, 5547, 5808, 6075, 6348, 6627, 6912, 7203, 7500
OFFSET
0,1
FORMULA
G.f.: (2 + 7*x^3 - 3*x^4)/(1 - x)^3. - Vincenzo Librandi, Jul 08 2017
E.g.f.: 2 + 3*x + 3*exp(x)*x*(1 + x). - Stefano Spezia, Dec 17 2022
MATHEMATICA
Join[{2, 6}, Table[3 n^2, {n, 2, 50}]] (* or *) {2, 6}~Join~LinearRecurrence[{3, -3, 1}, {12, 27, 48}, 50] (* Vincenzo Librandi, Jul 08 2017 *)
PROG
(Magma) [2, 6] cat [3*n^2: n in [2..60]]; // Vincenzo Librandi, Jul 08 2017
(PARI) a(n)=3*n^2+if(n<2, n+2) \\ Charles R Greathouse IV, Oct 21 2022
CROSSREFS
Essentially the same as A033428.
Sequence in context: A350294 A052971 A364423 * A029863 A091919 A059078
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jul 07 2017
STATUS
approved