login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A350294
a(n) = floor(n*2^n/(n + 1)).
2
0, 1, 2, 6, 12, 26, 54, 112, 227, 460, 930, 1877, 3780, 7606, 15291, 30720, 61680, 123790, 248346, 498073, 998643, 2001826, 4011942, 8039082, 16106127, 32263876, 64623350, 129424237, 259179060, 518975214, 1039104990, 2080374784, 4164816771, 8337289456, 16689015778
OFFSET
0,3
LINKS
Heiko Harborth and Hauke Nienborg, Saturated vertex Turán numbers for cube graphs, Congr. Num. 208 (2011), 183-188.
Mathonline, Cube Graphs
FORMULA
A350293(n) <= a(n) (see Lemma 1 in Harborth and Nienborg).
a(n) ~ 2^n.
MAPLE
f:= n -> floor(n*2^n/(n+1)):
map(f, [$0..40]); # Robert Israel, Dec 27 2021
MATHEMATICA
Table[Floor[n 2^n/(n+1)], {n, 0, 34}]
CROSSREFS
Sequence in context: A084170 A245264 A327477 * A052971 A364423 A289443
KEYWORD
nonn
AUTHOR
Stefano Spezia, Dec 23 2021
STATUS
approved