login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A350295
2nd subdiagonal of the triangle A350292.
2
6, 8, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 153, 171, 190, 210, 231, 253, 276, 300, 325, 351, 378, 406, 435, 465, 496, 528, 561, 595, 630, 666, 703, 741, 780, 820, 861, 903, 946, 990, 1035, 1081, 1128, 1176, 1225, 1275, 1326, 1378, 1431, 1485, 1540
OFFSET
3,1
LINKS
Heiko Harborth and Hauke Nienborg, Saturated vertex Turán numbers for cube graphs, Congr. Num. 208 (2011), 183-188.
Mathonline, Cube Graphs
FORMULA
a(n) = binomial(n, 2) = A000217(n-1) for n > 4 with a(3) = 6 and a(4) = 8 (see Theorem 3 in Harborth and Nienborg).
O.g.f.: x^3*(2*x^4 - 3*x^3 - 4*x^2 + 10*x - 6)/(x - 1)^3.
E.g.f.: x^2*(x^2 + 6*x + 6*exp(x) - 6)/12.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 7.
MATHEMATICA
Join[{6, 8}, Table[Binomial[n, 2], {n, 5, 56}]]
LinearRecurrence[{3, -3, 1}, {6, 8, 10, 15, 21}, 60] (* Harvey P. Dale, Jul 01 2022 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Stefano Spezia, Dec 23 2021
STATUS
approved