Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 Jul 01 2022 10:21:58
%S 6,8,10,15,21,28,36,45,55,66,78,91,105,120,136,153,171,190,210,231,
%T 253,276,300,325,351,378,406,435,465,496,528,561,595,630,666,703,741,
%U 780,820,861,903,946,990,1035,1081,1128,1176,1225,1275,1326,1378,1431,1485,1540
%N 2nd subdiagonal of the triangle A350292.
%H Harvey P. Dale, <a href="/A350295/b350295.txt">Table of n, a(n) for n = 3..1000</a>
%H Heiko Harborth and Hauke Nienborg, <a href="https://www.researchgate.net/publication/266861957_Saturated_vertex_Turan_numbers_for_cube_graphs">Saturated vertex Turán numbers for cube graphs</a>, Congr. Num. 208 (2011), 183-188.
%H Mathonline, <a href="http://mathonline.wikidot.com/cube-graphs">Cube Graphs</a>
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).
%F a(n) = binomial(n, 2) = A000217(n-1) for n > 4 with a(3) = 6 and a(4) = 8 (see Theorem 3 in Harborth and Nienborg).
%F O.g.f.: x^3*(2*x^4 - 3*x^3 - 4*x^2 + 10*x - 6)/(x - 1)^3.
%F E.g.f.: x^2*(x^2 + 6*x + 6*exp(x) - 6)/12.
%F a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 7.
%t Join[{6,8},Table[Binomial[n,2],{n,5,56}]]
%t LinearRecurrence[{3,-3,1},{6,8,10,15,21},60] (* _Harvey P. Dale_, Jul 01 2022 *)
%Y Cf. A000217, A112355, A161680, A350292.
%K nonn,easy
%O 3,1
%A _Stefano Spezia_, Dec 23 2021