login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A350291
a(n) = 4^n*lim_{x->0} F(2*n) where F(n) = (d/dx)F(n-1) for n >= 1 and F(0) = exp(BesselI(0, x) - 1).
4
1, 2, 18, 320, 9170, 376992, 20773368, 1464890856, 127857825810, 13468041055040, 1678544187282248, 243601216117107576, 40628915629002303512, 7702195195122395812600, 1644169152021779307173400, 392035147808725683863079120, 103680698454480621919621969170
OFFSET
0,2
LINKS
FORMULA
The Bell formula for n > 0 is:
a(n) = Sum_{k=1..2n} Y_{2n,k}(d_i), where Y_{n,k} is the partial Bell polynomial with inputs given by d_{2i} = binomial(2i,i) and d_{2i+1} = 0. - Geoff Goehle, Mar 11 2022
MAPLE
F := proc(n) option remember;
ifelse(n = 0, exp(BesselI(0, x) - 1), simplify(diff(F(n-1), x))) end:
a := n -> 4^n*limit(F(2*n), x=0): seq(a(n), n = 0..16);
MATHEMATICA
Table[Sum[BellY[n, k, Flatten[Table[{0, Binomial[j+1, (j+1)/2]}, {j, 1, n-k+1, 2}]]], {k, 0, n}], {n, 0, 32, 2}] (* Geoff Goehle, Mar 11 2022 *)
CROSSREFS
Cf. A352284, row sums of A350462.
Sequence in context: A296837 A326270 A227325 * A087215 A229490 A192985
KEYWORD
nonn
AUTHOR
Peter Luschny, Mar 11 2022
STATUS
approved