OFFSET
0,2
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..55
FORMULA
The Bell formula for n > 0 is:
a(n) = Sum_{k=1..2n} Y_{2n,k}(d_i), where Y_{n,k} is the partial Bell polynomial with inputs given by d_{2i} = binomial(2i,i) and d_{2i+1} = 0. - Geoff Goehle, Mar 11 2022
MAPLE
F := proc(n) option remember;
ifelse(n = 0, exp(BesselI(0, x) - 1), simplify(diff(F(n-1), x))) end:
a := n -> 4^n*limit(F(2*n), x=0): seq(a(n), n = 0..16);
MATHEMATICA
Table[Sum[BellY[n, k, Flatten[Table[{0, Binomial[j+1, (j+1)/2]}, {j, 1, n-k+1, 2}]]], {k, 0, n}], {n, 0, 32, 2}] (* Geoff Goehle, Mar 11 2022 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Peter Luschny, Mar 11 2022
STATUS
approved