login
A192985
E.g.f. satisfies: A(x) = 1 + x*Sum_{n>=0} (A(x)^n - 1)^n/n!.
1
1, 1, 2, 18, 324, 8600, 304110, 13494012, 723167816, 45583507944, 3314590951050, 273983096442440, 25451868722986332, 2633115724586963772, 301154828427859401086, 37850982841326873432060, 5202124730575982650388880
OFFSET
0,3
FORMULA
E.g.f. satisfies: A(x/G(x)) = 1 + x where G(x) = Sum_{n>=0} ((1+x)^n-1)^n/n! and G(x) = x/Series_Reversion(A(x)-1) = e.g.f. of A192935.
EXAMPLE
E.g.f.: A(x) = 1 + x + 2*x^2/2! + 18*x^3/3! + 324*x^4/4! + 8600*x^5/5! +...
where A(x/G(x)) = 1 + x and G(x) is the e.g.f. of A192935:
G(x) = 1 + x + 4*x^2/2! + 39*x^3/3! + 592*x^4/4! + 12965*x^5/5! +...
CROSSREFS
Cf. A192935.
Sequence in context: A350291 A087215 A229490 * A193264 A191492 A090307
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 13 2011
STATUS
approved