The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A087215 Lucas(6*n): a(n) = 18*a(n-1) - a(n-2), starting with a(0) = 2 and a(1) = 18. 14
 2, 18, 322, 5778, 103682, 1860498, 33385282, 599074578, 10749957122, 192900153618, 3461452808002, 62113250390418, 1114577054219522, 20000273725560978, 358890350005878082, 6440026026380244498, 115561578124838522882, 2073668380220713167378 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS a(n+1)/a(n) converges to 9 + sqrt(80) = 17.9442719... a(0)/a(1) = 2/18; a(1)/a(2) = 18/322; a(2)/a(3) = 322/5778; a(3)/a(4) = 5778/103682; etc. Lim_{n -> inf} a(n)/a(n+1) = 0.05572809000084... = 1/(9 + sqrt(80)) = 9 - sqrt(80). From Peter Bala, Oct 13 2019: (Start) Let F(x) = Product_{n >= 0} (1 + x^(4*n+1))/(1 + x^(4*n+3)). Let Phi = (1/2)*(sqrt(5) - 1). This sequence gives the partial denominators in the simple continued fraction expansion of the number F(Phi^6) = 1.0555459720... = 1 + 1/(18 + 1/(322 + 1/(5778 + ...))). Also F(-Phi^6) = 0.9444348576... has the continued fraction representation 1 - 1/(18 - 1/(322 - 1/(5788 - ...))) and the simple continued fraction expansion 1/(1 + 1/((18 - 2) + 1/(1 + 1/((322 - 2) + 1/(1 + 1/((5788 - 2) + 1/(1 + ...))))))). F(Phi^6)*F(-Phi^6) = 0.9968944099... has the simple continued fraction expansion 1/(1 + 1/((18^2 - 4) + 1/(1 + 1/((322^2 - 4) + 1/(1 + 1/((5788^2 - 4) + 1/(1 + ...))))))). 1/2 + (1/2)*F(Phi^6)/F(-Phi^6) = 1.0588241282... has the simple continued fraction expansion 1 + 1/((18 - 2) + 1/(1 + 1/((5778 - 2) + 1/(1 + 1/(1860498 - 2) + 1/(1 + ...))))). (End) REFERENCES R. P. Stanley. Enumerative combinatorics. Vol. 2, volume 62 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1999. LINKS Colin Barker, Table of n, a(n) for n = 0..750 Hacène Belbachir, Soumeya Merwa Tebtoub, and László Németh, Ellipse Chains and Associated Sequences, J. Int. Seq., Vol. 23 (2020), Article 20.8.5. P. Bhadouria, D. Jhala, and B. Singh, Binomial Transforms of the k-Lucas Sequences and its Properties, The Journal of Mathematics and Computer Science (JMCS), Volume 8, Issue 1, Pages 81-92; sequence R_4. Tanya Khovanova, Recursive Sequences A. V. Zarelua, On Matrix Analogs of Fermat's Little Theorem, Mathematical Notes, vol. 79, no. 6, 2006, pp. 783-796. Translated from Matematicheskie Zametki, vol. 79, no. 6, 2006, pp. 840-855. Index entries for recurrences a(n) = k*a(n - 1) +/- a(n - 2) Index entries for linear recurrences with constant coefficients, signature (18,-1). FORMULA a(n) = A000032(6*n). a(n) = 18*a(n-1) - a(n-2), starting with a(0) = 2 and a(1) = 18. a(n) = (9 + sqrt(80))^n + (9 - sqrt(80))^n. G.f.: 2*(1-9*x)/(1-18*x+x^2). - Philippe Deléham, Nov 17 2008 a(n) = 2*A023039(n). - R. J. Mathar, Oct 22 2010 From Peter Bala, Oct 13 2019: (Start) a(n) = F(6*n+6)/F(6) - F(6*n-6)/F(6) = A049660(n+1) - A049660(n-1). a(n) = trace(M^n), where M is the 2 X 2 matrix [0, 1; 1, 1]^6 = [5, 8; 8, 13]. Consequently the Gauss congruences hold: a(n*p^k) = a(n*p^(k-1)) ( mod p^k ) for all prime p and positive integers n and k. See Zarelua and also Stanley (Ch. 5, Ex. 5.2(a) and its solution). 16*Sum_{n >= 1} 1/(a(n) - 20/a(n)) = 1: (20 = Lucas(6) + 2 and 16 = Lucas(6) - 2) 20*Sum_{n >= 1} (-1)^(n+1)/(a(n) + 16/a(n)) = 1. Series acceleration formulas for sum of reciprocals: Sum_{n >= 1} 1/a(n) = 1/16 - 20*Sum_{n >= 1} 1/(a(n)*(a(n)^2 - 20)). Sum_{n >= 1} (-1)^(n+1)/a(n) = 1/20 + 16*Sum_{n >= 1} (-1)^(n+1)/(a(n)*(a(n)^2 + 16)). Sum_{n >= 1} 1/a(n) = ( (theta_3(9-4*sqrt(5)))^2 - 1 )/4 and Sum_{n >= 1} (-1)^(n+1)/a(n) = ( 1 - (theta_3(4*sqrt(5)-9))^2 )/4, where theta_3(x) = 1 + 2*Sum_{n >= 1} x^(n^2) (see A000122). Cf. A153415 and A003499. x*exp(Sum_{n >= 1} a(n)*x^/n) = x + 18*x^2 + 323*x^3 + ... is the o.g.f. for A049660. (End) E.g.f.: 2*exp(9*x)*cosh(4*sqrt(5)*x). - Stefano Spezia, Oct 18 2019 a(n) = L(2n-1)^2 * F(2n+1) + L(2n+1)^2 * F(2n-1), where F(n) = A000045(n) and L(n) = A000032(n). - Diego Rattaggi, Nov 12 2020 EXAMPLE a(4) = 103682 = 18*a(3) - a(2) = 18*5778 - 322 = (9 + sqrt(80))^4 + (9 - sqrt(80))^4 = 103681.99999035512... + 0.00000964487... = 103682. MATHEMATICA a[0] = 2; a[1] = 18; a[n_] := 18a[n - 1] - a[n - 2]; Table[ a[n], {n, 0, 15}] (* Robert G. Wilson v, Jan 30 2004 *) Table[LucasL[6n], {n, 0, 18}] (* or *) CoefficientList[Series[2*(1 - 9*x)/(1 - 18*x + x^2), {x, 0, 17}], x] (* Indranil Ghosh, Mar 15 2017 *) PROG (Magma) [ Lucas(6*n) : n in [0..100]]; // Vincenzo Librandi, Apr 14 2011 (PARI) Vec(2*(1-9*x)/(1-18*x+x^2) + O(x^20)) \\ Colin Barker, Jan 24 2016 (PARI) a(n) = if(n<2, 17^n + 1, 18*a(n - 1) - a(n - 2)); for(n=0, 17, print1(a(n), ", ")) \\ Indranil Ghosh, Mar 15 2017 CROSSREFS Cf. A074919. Row 2 * 2 of array A188645. Cf. Lucas(k*n): A000032 (k = 1), A005248 (k = 2), A014448 (k = 3), A056854 (k = 4), A001946 (k = 5), A087281 (k = 7), A087265 (k = 8), A087287 (k = 9), A065705 (k = 10), A089772 (k = 11), A089775 (k = 12). Sequence in context: A326270 A227325 A350291 * A229490 A192985 A193264 Adjacent sequences: A087212 A087213 A087214 * A087216 A087217 A087218 KEYWORD easy,nonn AUTHOR Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Oct 19 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 6 15:29 EST 2023. Contains 367610 sequences. (Running on oeis4.)