login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A023039 a(n) = 18*a(n-1) - a(n-2). 29
1, 9, 161, 2889, 51841, 930249, 16692641, 299537289, 5374978561, 96450076809, 1730726404001, 31056625195209, 557288527109761, 10000136862780489, 179445175002939041, 3220013013190122249, 57780789062419261441 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

The primitive Heronian triangle 3*a(n) +- 2, 4*a(n) has the latter side cut into 2*a(n) +- 3 by the corresponding altitude and has area 10*a(n)*A060645(n). - Lekraj Beedassy, Jun 25 2002

Chebyshev polynomials T(n,x) evaluated at x=9.

{a(n)} gives all (unsigned, integer) solutions of Pell equation a(n)^2 - 80*b(n)^2 = +1 with b(n) = A049660(n), n >= 0.

{a(n)} gives all possible solutions for x in Pell equation x^2 - D*y^2 = 1 for D=5, D=20 and D=80. The corresponding values for y are A060645 (D=5), A207832 (D=20) and A049660 (D=80). - Herbert Kociemba, Jun 05 2022

Also gives solutions to the equation x^2 - 1 = floor(x*r*floor(x/r)) where r=sqrt(5). - Benoit Cloitre, Feb 14 2004

Appears to give all solutions > 1 to the equation: x^2 = ceiling(x*r*floor(x/r)) where r=sqrt(5). - Benoit Cloitre, Feb 24 2004

For all terms x of the sequence, 5*x^2 - 5 is a square, A004292(n)^2.

The a(n) are the x-values in the nonnegative integer solutions of x^2 - 5y^2 = 1, see A060645(n) for the corresponding y-values. - Sture Sjöstedt, Nov 29 2011

Rightmost digits alternate repeatedly: 1 and 9 in fact, a(2) = 18*9 - 1 == 1 (mod 10); a(3) = 18*1 - 9 == 9 (mod 10) therefore a(2n) == 1 (mod 10), a(2n+1) == 9 (mod 10). - Carmine Suriano, Oct 03 2013

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..750 (terms 0..200 from Vincenzo Librandi)

Hacène Belbachir, Soumeya Merwa Tebtoub, and László Németh, Ellipse Chains and Associated Sequences, J. Int. Seq., Vol. 23 (2020), Article 20.8.5.

Tanya Khovanova, Recursive Sequences

Index entries for sequences related to Chebyshev polynomials.

Index entries for linear recurrences with constant coefficients, signature (18,-1).

FORMULA

a(n) ~ (1/2)*(sqrt(5) + 2)^(2*n). - Joe Keane (jgk(AT)jgk.org), May 15 2002

Limit_{n->infinity} a(n)/a(n-1) = phi^6 = 9 + 4*sqrt(5). - Gregory V. Richardson, Oct 13 2002

a(n) = T(n, 9) = (S(n, 18) - S(n-2, 18))/2, with S(n, x) := U(n, x/2) and T(n, x), resp. U(n, x), are Chebyshev's polynomials of the first, resp. second, kind. See A053120 and A049310. S(-2, x) := -1, S(-1, x) := 0, S(n, 18)=A049660(n+1).

a(n) = sqrt(80*A049660(n)^2 + 1) (cf. Richardson comment).

a(n) = ((9 + 4*sqrt(5))^n + (9 - 4*sqrt(5))^n)/2.

G.f.: (1 - 9*x)/(1 - 18*x + x^2).

a(n) = cosh(2*n*arcsinh(2)). - Herbert Kociemba, Apr 24 2008

a(n) = A001077(2*n). - Michael Somos, Aug 11 2009

From Johannes W. Meijer, Jul 01 2010: (Start)

a(n) = 2*A167808(6*n+1) - A167808(6*n+3).

Limit_{k->infinity} a(n+k)/a(k) = a(n) + A060645(n)*sqrt(5).

Limit_{n->infinity} a(n)/A060645(n) = sqrt(5).

(End)

a(n) = (1/2)*A087215(n) = (1/2)*(sqrt(5) + 2)^(2*n) + (1/2)*(sqrt(5) - 2)^(2*n).

Sum_{n >= 1} 1/( a(n) - 5/a(n) ) = 1/8. Compare with A005248, A002878 and A075796. - Peter Bala, Nov 29 2013

a(n) = 2*A115032(n-1) - 1 = S(n, 18) - 9*S(n-1, 18), with A115032(-1) = 1, and see the above formula with S(n, 18) using its recurrence. - Wolfdieter Lang, Aug 22 2014

a(n) = A128052(3n). - A.H.M. Smeets, Oct 02 2017

a(n) = A049660(n+1) - 9*A049660(n). - R. J. Mathar, May 24 2018

a(n) = hypergeom([n, -n], [1/2], -4). - Peter Luschny, Jul 26 2020

a(n) = L(6*n)/2 for L(n) the Lucas sequence A000032(n). - Greg Dresden, Dec 07 2021

a(n) = cosh(6*n*arccsch(2)). - Peter Luschny, May 25 2022

EXAMPLE

G.f. = 1 + 9*x + 161*x^2 + 2889*x^3 + 51841*x4 + 930249*x^5 + 16692641*x^6 + ...

MAPLE

a := n -> hypergeom([n, -n], [1/2], -4):

seq(simplify(a(n)), n=0..16); # Peter Luschny, Jul 26 2020

MATHEMATICA

LinearRecurrence[{18, -1}, {1, 9}, 50] (* Sture Sjöstedt, Nov 29 2011 *)

CoefficientList[Series[(1-9*x)/(1-18*x+x^2), {x, 0, 50}], x] (* G. C. Greubel, Dec 19 2017 *)

PROG

(PARI) {a(n) = fibonacci(6*n) / 2 + fibonacci(6*n - 1)}; /* Michael Somos, Aug 11 2009 */

(Magma) I:=[1, 9]; [n le 2 select I[n] else 18*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Feb 13 2012

(PARI) x='x+O('x^30); Vec((1-9*x)/(1-18*x+x^2)) \\ G. C. Greubel, Dec 19 2017

CROSSREFS

Cf. A001077, A115032.

Row 2 of array A188645.

Row 4 of A322790.

Sequence in context: A062232 A337627 A020523 * A243682 A337152 A159831

Adjacent sequences: A023036 A023037 A023038 * A023040 A023041 A023042

KEYWORD

nonn,easy

AUTHOR

David W. Wilson

EXTENSIONS

Chebyshev and Pell comments from Wolfdieter Lang, Nov 08 2002

Sture Sjöstedt's comment corrected and reformulated by Wolfdieter Lang, Aug 24 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 28 05:31 EDT 2023. Contains 361577 sequences. (Running on oeis4.)