login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A029863
Expansion of Product_{k >= 1} 1/(1-x^k)^c(k), where c(1), c(2), ... = 2 3 2 3 2 3 2 3 ....
2
1, 2, 6, 12, 27, 50, 98, 172, 310, 522, 888, 1444, 2357, 3724, 5882, 9072, 13957, 21082, 31732, 47072, 69545, 101540, 147620, 212516, 304631, 433054, 613030, 861616, 1206089, 1677766, 2324844, 3203748, 4398602, 6009390, 8181250
OFFSET
0,2
COMMENTS
Number of partitions of n where there are 2 kinds of odd parts and 3 kinds of even parts. - Ilya Gutkovskiy, Jan 17 2018
LINKS
FORMULA
Euler transform of period 2 sequence [2, 3, ...].
a(n) ~ 5 * exp(sqrt(5*n/3)*Pi) / (48 * n^(3/2)). - Vaclav Kotesovec, Sep 20 2015
G.f.: Product_{k >= 1} 1/(1-x^k)^A010693(k-1). - Georg Fischer, Dec 10 2020
EXAMPLE
G.f. = 1 + 2*x + 6*x^2 + 12*x^3 + 27*x^4 + 50*x^5 + 98*x^6 + 172*x^7 + ...
MATHEMATICA
nmax = 50; CoefficientList[Series[Product[1/((1 + x^k)*(1 - x^k)^3), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 20 2015 *)
PROG
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( 1 / (eta(x + A)^2 * eta(x^2 + A)), n))};
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved