OFFSET
0,3
COMMENTS
Number of partitions of n where there are 3 kinds of even parts. - Ilya Gutkovskiy, Jan 17 2018
Also the number of non-isomorphic multiset partitions of weight n using singletons or pairs where no vertex appears more than twice. - Gus Wiseman, Oct 18 2018 (Proved by Andrew Howroyd, Oct 26 2018)
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..10000
N. J. A. Sloane, Transforms
FORMULA
Euler transform of period 2 sequence [ 1, 3, ...].
G.f.: Product_{k>0} 1 / ((1 - x^(2*k))^3 * (1 - x^(2*k-1))). - Michael Somos, Mar 23 2003
a(n) ~ exp(2*Pi*sqrt(n/3))/(6*sqrt(2)*n^(3/2)). - Vaclav Kotesovec, Sep 07 2015
EXAMPLE
G.f. = 1 + x + 4*x^2 + 5*x^3 + 14*x^4 + 18*x^5 + 41*x^6 + 54*x^7 + 109*x^8 + ...
G.f. = q^-5 + q^19 + 4*q^43 + 5*q^67 + 14*q^91 + 18*q^115 + 41*q^139 + ...
From Gus Wiseman, Oct 27 2018: (Start)
Non-isomorphic representatives of the a(1) = 1 through a(5) = 18 multiset partitions using singletons or pairs where no vertex appears more than twice:
{{1}} {{1,1}} {{1},{2,2}} {{1,1},{2,2}} {{1},{2,2},{3,3}}
{{1,2}} {{1},{2,3}} {{1,2},{1,2}} {{1},{2,3},{2,3}}
{{1},{1}} {{2},{1,2}} {{1,2},{3,3}} {{1},{2,3},{4,4}}
{{1},{2}} {{1},{2},{2}} {{1,2},{3,4}} {{1},{2,3},{4,5}}
{{1},{2},{3}} {{1,3},{2,3}} {{1},{2,4},{3,4}}
{{1},{1},{2,2}} {{2},{1,2},{3,3}}
{{1},{1},{2,3}} {{2},{1,3},{2,3}}
{{1},{2},{1,2}} {{4},{1,2},{3,4}}
{{1},{2},{3,3}} {{1},{1},{3},{2,3}}
{{1},{2},{3,4}} {{1},{2},{2},{3,3}}
{{1},{3},{2,3}} {{1},{2},{2},{3,4}}
{{1},{1},{2},{2}} {{1},{2},{3},{2,3}}
{{1},{2},{3},{3}} {{1},{2},{3},{4,4}}
{{1},{2},{3},{4}} {{1},{2},{3},{4,5}}
{{1},{2},{4},{3,4}}
{{1},{2},{2},{3},{3}}
{{1},{2},{3},{4},{4}}
{{1},{2},{3},{4},{5}}
(End)
MATHEMATICA
nmax = 40; CoefficientList[Series[Product[1 / ((1 - x^(2*k))^3 * (1 - x^(2*k-1))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 07 2015 *)
QP = QPochhammer; s = 1/(QP[q]*QP[q^2]^2) + O[q]^40; CoefficientList[s, q] (* Jean-François Alcover, Nov 25 2015 *)
PROG
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( 1 / (eta(x + A) * eta(x^2 + A)^2), n))};
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved