login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A029862
Expansion of q^(5/24) / (eta(q) * eta(q^2)^2) in powers of q
11
1, 1, 4, 5, 14, 18, 41, 54, 109, 145, 267, 357, 618, 826, 1359, 1815, 2872, 3824, 5859, 7774, 11600, 15329, 22362, 29425, 42113, 55167, 77648, 101267, 140479, 182395, 249789, 322906, 437199, 562755, 754171, 966713, 1283630, 1638716, 2157763
OFFSET
0,3
COMMENTS
Number of partitions of n where there are 3 kinds of even parts. - Ilya Gutkovskiy, Jan 17 2018
Also the number of non-isomorphic multiset partitions of weight n using singletons or pairs where no vertex appears more than twice. - Gus Wiseman, Oct 18 2018 (Proved by Andrew Howroyd, Oct 26 2018)
LINKS
N. J. A. Sloane, Transforms
FORMULA
Euler transform of period 2 sequence [ 1, 3, ...].
G.f.: Product_{k>0} 1 / ((1 - x^(2*k))^3 * (1 - x^(2*k-1))). - Michael Somos, Mar 23 2003
a(n) ~ exp(2*Pi*sqrt(n/3))/(6*sqrt(2)*n^(3/2)). - Vaclav Kotesovec, Sep 07 2015
EXAMPLE
G.f. = 1 + x + 4*x^2 + 5*x^3 + 14*x^4 + 18*x^5 + 41*x^6 + 54*x^7 + 109*x^8 + ...
G.f. = q^-5 + q^19 + 4*q^43 + 5*q^67 + 14*q^91 + 18*q^115 + 41*q^139 + ...
From Gus Wiseman, Oct 27 2018: (Start)
Non-isomorphic representatives of the a(1) = 1 through a(5) = 18 multiset partitions using singletons or pairs where no vertex appears more than twice:
{{1}} {{1,1}} {{1},{2,2}} {{1,1},{2,2}} {{1},{2,2},{3,3}}
{{1,2}} {{1},{2,3}} {{1,2},{1,2}} {{1},{2,3},{2,3}}
{{1},{1}} {{2},{1,2}} {{1,2},{3,3}} {{1},{2,3},{4,4}}
{{1},{2}} {{1},{2},{2}} {{1,2},{3,4}} {{1},{2,3},{4,5}}
{{1},{2},{3}} {{1,3},{2,3}} {{1},{2,4},{3,4}}
{{1},{1},{2,2}} {{2},{1,2},{3,3}}
{{1},{1},{2,3}} {{2},{1,3},{2,3}}
{{1},{2},{1,2}} {{4},{1,2},{3,4}}
{{1},{2},{3,3}} {{1},{1},{3},{2,3}}
{{1},{2},{3,4}} {{1},{2},{2},{3,3}}
{{1},{3},{2,3}} {{1},{2},{2},{3,4}}
{{1},{1},{2},{2}} {{1},{2},{3},{2,3}}
{{1},{2},{3},{3}} {{1},{2},{3},{4,4}}
{{1},{2},{3},{4}} {{1},{2},{3},{4,5}}
{{1},{2},{4},{3,4}}
{{1},{2},{2},{3},{3}}
{{1},{2},{3},{4},{4}}
{{1},{2},{3},{4},{5}}
(End)
MATHEMATICA
nmax = 40; CoefficientList[Series[Product[1 / ((1 - x^(2*k))^3 * (1 - x^(2*k-1))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 07 2015 *)
QP = QPochhammer; s = 1/(QP[q]*QP[q^2]^2) + O[q]^40; CoefficientList[s, q] (* Jean-François Alcover, Nov 25 2015 *)
PROG
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( 1 / (eta(x + A) * eta(x^2 + A)^2), n))};
KEYWORD
nonn
STATUS
approved