login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A300278
G.f.: 1 + Sum_{n>=1} a(n)*x^n/(1 - x^n) = Product_{n>=1} (1 + n*x^n).
5
1, 1, 4, 5, 14, 19, 42, 57, 115, 170, 287, 433, 694, 1061, 1709, 2461, 3740, 5635, 8243, 12256, 18255, 26135, 37826, 54209, 78315, 110488, 159418, 224514, 315414, 442790, 618665, 855640, 1199409, 1642334, 2288904, 3144738, 4303994, 5862294, 8031872, 10869290, 14749050
OFFSET
1,3
COMMENTS
Moebius transform of A022629.
LINKS
FORMULA
a(n) = Sum_{d|n} mu(n/d)*A022629(d).
MATHEMATICA
nn = 41; f[x_] := 1 + Sum[a[n] x^n/(1 - x^n), {n, 1, nn}]; sol = SolveAlways[0 == Series[f[x] - Product[(1 + n x^n), {n, 1, nn}], {x, 0, nn}], x]; Table[a[n], {n, 1, nn}] /. sol // Flatten
s[n_] := SeriesCoefficient[Product[(1 + k x^k), {k, 1, n}], {x, 0, n}]; a[n_] := Sum[MoebiusMu[n/d] s[d], {d, Divisors[n]}]; Table[a[n], {n, 1, 41}]
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Mar 01 2018
STATUS
approved