login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A300275
G.f.: 1 + Sum_{n>=1} a(n)*x^n/(1 - x^n) = Product_{n>=1} 1/(1 - x^n)^n.
9
1, 2, 5, 10, 23, 40, 85, 147, 276, 474, 858, 1421, 2484, 4079, 6850, 11137, 18333, 29277, 47329, 74768, 118703, 185614, 290782, 449568, 696009, 1066258, 1632376, 2479057, 3759611, 5661568, 8512308, 12722132, 18974109, 28157619, 41690937, 61453929, 90379783
OFFSET
1,2
COMMENTS
Moebius transform of A000219.
From Gus Wiseman, Jan 21 2019: (Start)
Also the number of plane partitions of n with relatively prime entries. For example, the a(4) = 10 plane partitions are:
31 211 1111
.
3 21 11 111
1 1 11 1
.
2 11
1 1
1 1
.
1
1
1
1
Also the number of plane partitions of n whose multiset of rows is aperiodic, meaning its multiplicities are relatively prime. For example, the a(4) = 10 plane partitions are:
4 31 22 211 1111
.
3 21 111
1 1 1
.
2 11
1 1
1 1
(End)
LINKS
N. J. A. Sloane, Transforms
FORMULA
a(n) = Sum_{d|n} mu(n/d)*A000219(d).
MAPLE
with(numtheory):
b:= proc(n) option remember; `if`(n=0, 1, add(
b(n-j)*sigma[2](j), j=1..n)/n)
end:
a:= n-> add(b(d)*mobius(n/d), d=divisors(n)):
seq(a(n), n=1..40); # Alois P. Heinz, Jun 21 2018
MATHEMATICA
nn = 37; f[x_] := 1 + Sum[a[n] x^n/(1 - x^n), {n, 1, nn}]; sol = SolveAlways[0 == Series[f[x] - Product[1/(1 - x^n)^n, {n, 1, nn}], {x, 0, nn}], x]; Table[a[n], {n, 1, nn}] /. sol // Flatten
s[n_] := SeriesCoefficient[Product[1/(1 - x^k)^k, {k, 1, n}], {x, 0, n}]; a[n_] := Sum[MoebiusMu[n/d] s[d], {d, Divisors[n]}]; Table[a[n], {n, 1, 37}]
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Mar 01 2018
STATUS
approved