login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A300280
Triangle defined by T(n,k) = Sum_{j>=0} C(j+k, k) * C((j+k)*k, n-k) / 2^(j+k+1), for n>=0, k = 0..n, as read by rows.
2
1, 0, 1, 0, 3, 1, 0, 5, 10, 1, 0, 7, 57, 21, 1, 0, 9, 252, 246, 36, 1, 0, 11, 969, 2158, 710, 55, 1, 0, 13, 3414, 15927, 10260, 1635, 78, 1, 0, 15, 11329, 104883, 122125, 35085, 3255, 105, 1, 0, 17, 35992, 637252, 1273192, 611130, 96992, 5852, 136, 1, 0, 19, 110625, 3647268, 12057412, 9199386, 2321004, 230972, 9756, 171, 1, 0, 21, 331298, 19935477, 106181320, 124315310, 47518716, 7261394, 492408, 15345, 210, 1, 0, 23, 971609, 105054633, 883422885, 1546241270, 865414802, 193797618, 19669302, 963795, 23045, 253, 1
OFFSET
0,5
COMMENTS
Is there a closed-form expression for the terms T(n,k) of this triangle?
Row sums form A300279, with g.f.: Sum_{n>=0} (1 + x*(1+x)^n)^n / 2^(n+1).
FORMULA
T(n,k) = Sum_{j>=0} C(j+k, k) * C((j+k)*k, n-k) / 2^(j+k+1).
G.f. A(x,y) = Sum_{n>=0} Sum_{k=0..n} T(n,k) * x^n * y^k is given by:
(1) A(x,y) = Sum_{n>=0} (1 + x*y * (1+x)^n)^n / 2^(n+1).
(2) A(x,y) = Sum_{n>=0} x^n * y^n * (1+x)^(n^2) / (2 - (1+x)^n)^(n+1).
EXAMPLE
This triangle begins:
1;
0, 1;
0, 3, 1;
0, 5, 10, 1;
0, 7, 57, 21, 1;
0, 9, 252, 246, 36, 1;
0, 11, 969, 2158, 710, 55, 1;
0, 13, 3414, 15927, 10260, 1635, 78, 1;
0, 15, 11329, 104883, 122125, 35085, 3255, 105, 1;
0, 17, 35992, 637252, 1273192, 611130, 96992, 5852, 136, 1;
0, 19, 110625, 3647268, 12057412, 9199386, 2321004, 230972, 9756, 171, 1;
0, 21, 331298, 19935477, 106181320, 124315310, 47518716, 7261394, 492408, 15345, 210, 1;
0, 23, 971609, 105054633, 883422885, 1546241270, 865414802, 193797618, 19669302, 963795, 23045, 253, 1; ...
GENERATING FUNCTIONS.
G.f.: A(x,y) = Sum_{n>=0} x^n*y^n * (1+x)^(n^2) / (2 - (1+x)^n)^(n+1).
Expanding,
G.f.: A(x,y) = 1 + x*y*(1+x)/(2 - (1+x))^2 + x^2*y^2*(1+x)^4/(2 - (1+x)^2)^3 + x^3*y^3*(1+x)^9/(2 - (1+x)^3)^4 + x^4*y^4*(1+x)^16/(2 - (1+x)^4)^5 + x^5*y^5*(1+x)^25/(2 - (1+x)^5)^6 + x^6*y^6*(1+x)^36/(2 - (1+x)^6)^7 + ...
Also, due to a series identity:
A(x,y) = 1/2 + (1 + x*y*(1+x))/2^2 + (1 + x*y*(1+x)^2)^2/2^3 + (1 + x*y*(1+x)^3)^3/2^4 + (1 + x*y*(1+x)^4)^4/2^5 + (1 + x*y*(1+x)^5)^5/2^6 + (1 + x*y*(1+x)^6)^6/2^7 + ... + (1 + x*y * (1+x)^n)^n / 2^(n+1) + ...
Explicitly,
G.f.: A(x,y) = 1 + y*x + (y^2 + 3*y)*x^2 + (y^3 + 10*y^2 + 5*y)*x^3 + (y^4 + 21*y^3 + 57*y^2 + 7*y)*x^4 + (y^5 + 36*y^4 + 246*y^3 + 252*y^2 + 9*y)*x^5 + (y^6 + 55*y^5 + 710*y^4 + 2158*y^3 + 969*y^2 + 11*y)*x^6 + (y^7 + 78*y^6 + 1635*y^5 + 10260*y^4 + 15927*y^3 + 3414*y^2 + 13*y)*x^7 + (y^8 + 105*y^7 + 3255*y^6 + 35085*y^5 + 122125*y^4 + 104883*y^3 + 11329*y^2 + 15*y)*x^8 + ...
The row sums begin
A300279 = [1, 1, 4, 16, 86, 544, 3904, 31328, 276798, 2660564, ...],
and has g.f.: Sum_{n>=0} (1 + x*(1+x)^n)^n / 2^(n+1).
RELATED TRIANGLE.
The coefficients in 1/A(x,y) forms the triangle:
1;
0, -1;
0, -3, 0;
0, -5, -4, 0;
0, -7, -38, -4, 0;
0, -9, -208, -104, -4, 0;
0, -11, -884, -1336, -202, -4, 0;
0, -13, -3268, -12112, -4768, -332, -4, 0;
0, -15, -11098, -89540, -75532, -12520, -494, -4, 0; ...
PROG
(PARI) /* Must set N to a large value for accuracy: */ N=10000;
{T(n, k) = round( sum(j=0, N, binomial(j+k, k) * binomial((j+k)*k, n-k) / 2^(j+k+1)*1. ) )}
for(n=0, 12, for(k=0, n, print1(T(n, k), ", ")); print(""))
(PARI) /* Faster, without precision errors: */
{T(n, k) = my(A = sum(m=0, n, x^m * y^m * (1+x + x*O(x^n))^(m^2) / (2 - (1+x + x*O(x^n))^m )^(m+1) )); polcoeff(polcoeff(A, n, x), k, y)}
for(n=0, 12, for(k=0, n, print1(T(n, k), ", ")); print(""))
CROSSREFS
Cf. A300279 (row sums).
Sequence in context: A201667 A175779 A280819 * A376727 A135670 A096754
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Mar 01 2018
STATUS
approved