login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A300281
G.f.: Sum_{n>=0} (1 + (1 + 2*x)^n)^n / 2^(2*n+1).
0
1, 3, 41, 967, 32109, 1373603, 71889889, 4448939407, 317785091933, 25731184562939, 2328915407063705, 233001395274021991, 25533207271295208821, 3041514682215417132371, 391307447238067445930129, 54074977650384006192679103, 7988238906084714854241917421, 1256227929202274469473017312811, 209531162751200464078327250379657, 36946198191974438054673167074349079
OFFSET
0,2
COMMENTS
Is there a closed-form expression for the terms of this sequence?
FORMULA
G.f. A(x) is given by:
(1) A(x) = Sum_{n>=0} 2 * (1 + (1 + 2*x)^n)^n / 4^(n+1).
(2) A(x) = Sum_{n>=0} 2 * (1 + 2*x)^(n^2) / (4 - (1 + 2*x)^n)^(n+1).
EXAMPLE
G.f.: A(x) = 1 + 3*x + 41*x^2 + 967*x^3 + 32109*x^4 + 1373603*x^5 + 71889889*x^6 + 4448939407*x^7 + 317785091933*x^8 + 25731184562939*x^9 + ...
such that
A(x) = 1/2 + (1 + (1+2*x))/2^3 + (1 + (1+2*x)^2)^2/2^5 + (1 + (1+2*x)^3)^3/2^7 + (1 + (1+2*x)^4)^4/2^9 + (1 + (1+2*x)^5)^5/2^11 + (1 + (1+2*x)^6)^6/2^13 + ...
Also, due to a series identity,
A(x) = 2/3 + 2*(1+2*x)/(4 - (1+2*x))^2 + 2*(1+2*x)^4/(4 - (1+2*x)^2)^3 + 2*(1+2*x)^9/(4 - (1+2*x)^3)^4 + 2*(1+2*x)^16/(4 - (1+2*x)^4)^5 + 2*(1+2*x)^25/(4 - (1+2*x)^5)^6 + 2*(1+2*x)^36/(4 - (1+2*x)^6)^7 + ...
CROSSREFS
Sequence in context: A138961 A075022 A367981 * A012175 A007313 A222524
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 03 2018
STATUS
approved