The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A222524 O.g.f.: Sum_{n>=0} n^n*(2*n+1)^n * exp(-n*(2*n+1)*x) * x^n / n!. 0
1, 3, 41, 1057, 40057, 2006631, 125093285, 9333786225, 811181004929, 80480710535035, 8975976702322401, 1111688368710017121, 151388120776146737641, 22482576760232188394991, 3616177985990080869347277, 626250139757797928093888481, 116181112230230754285955844865 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
LINKS
FORMULA
a(n) = 1/n! * [x^n] Sum_{k>=0} k^k*(2*k+1)^k * x^k / (1 + k*(2*k+1)*x)^(k+1).
a(n) = 1/n! * Sum_{k=0..n} (-1)^(n-k)*binomial(n,k) * k^n*(2*k+1)^n.
EXAMPLE
O.g.f.: A(x) = 1 + 3*x + 41*x^2 + 1057*x^3 + 40057*x^4 + 2006631*x^5 +...
where
A(x) = 1 + 3*x*exp(-3*x) + 10^2*exp(-10*x)*x^2/2! + 21^3*exp(-21*x)*x^3/3! + 36^4*exp(-36*x)*x^4/4! + 55^5*exp(-55*x)*x^5/5! +...
is a power series in x with integer coefficients.
PROG
(PARI) {a(n)=polcoeff(sum(k=0, n, k^k*(2*k+1)^k*exp(-k*(2*k+1)*x +x*O(x^n))*x^k/k!), n)}
for(n=0, 25, print1(a(n), ", "))
(PARI) {a(n)=(1/n!)*polcoeff(sum(k=0, n, k^k*(2*k+1)^k*x^k/(1+k*(2*k+1)*x +x*O(x^n))^(k+1)), n)}
for(n=0, 20, print1(a(n), ", "))
(PARI) {a(n)=1/n!*sum(k=0, n, (-1)^(n-k)*binomial(n, k)*k^n*(2*k+1)^n)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Sequence in context: A300281 A012175 A007313 * A241704 A181675 A012053
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 24 2013
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 15 02:34 EDT 2024. Contains 373402 sequences. (Running on oeis4.)