login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A085410
Total number of parts in all partitions of n into relatively prime parts.
4
1, 2, 5, 9, 19, 27, 53, 74, 122, 170, 274, 355, 555, 724, 1043, 1377, 1964, 2487, 3497, 4429, 5993, 7622, 10205, 12701, 16831, 20964, 27166, 33756, 43452, 53296, 68134, 83464, 105086, 128495, 160803, 195006, 242811, 293701, 362026, 436842, 536103
OFFSET
1,2
FORMULA
Moebius transform of A006128: Sum_{d|n} mu(n/d)*A006128(d).
EXAMPLE
Partitions of 6 into relatively prime parts are: 1+1+1+1+1+1, 1+1+1+1+2, 1+1+2+2, 1+1+1+3, 1+2+3, 1+1+4, 1+5; total number of parts is a(6)=6+5+4+4+3+3+2=27.
MATHEMATICA
f[n_] := Sum[DivisorSigma[0, m] PartitionsP[n - m], {m, 1, n}]; MT[n_] := Block[{d = Divisors[n]}, Plus @@ (MoebiusMu /@ (n/d)*f /@ d)]; Table[ MT[n], {n, 1, 41}]
PROG
(PARI) a006128(n) = sum(m=1, n, numdiv(m)*numbpart(n - m));
a(n) = sumdiv(n, d, moebius(n/d)*a006128(d)); \\ Indranil Ghosh, Apr 25 2017
(Python)
from sympy import divisors, divisor_count, npartitions, mobius
def a006128(n): return sum([divisor_count(m)*npartitions(n - m) for m in range(1, n + 1)])
def a(n): return sum([mobius(n/d)*a006128(d) for d in divisors(n)]) # Indranil Ghosh, Apr 25 2017
CROSSREFS
Cf. A000837.
Sequence in context: A342013 A213544 A265482 * A073118 A048082 A089089
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Aug 13 2003
EXTENSIONS
More terms from Robert G. Wilson v, Aug 17 2003
STATUS
approved