OFFSET
1,2
EXAMPLE
Partitions of 6 into relatively prime parts are: 1+1+1+1+1+1, 1+1+1+1+2, 1+1+2+2, 1+1+1+3, 1+2+3, 1+1+4, 1+5; total number of parts is a(6)=6+5+4+4+3+3+2=27.
MATHEMATICA
f[n_] := Sum[DivisorSigma[0, m] PartitionsP[n - m], {m, 1, n}]; MT[n_] := Block[{d = Divisors[n]}, Plus @@ (MoebiusMu /@ (n/d)*f /@ d)]; Table[ MT[n], {n, 1, 41}]
PROG
(PARI) a006128(n) = sum(m=1, n, numdiv(m)*numbpart(n - m));
a(n) = sumdiv(n, d, moebius(n/d)*a006128(d)); \\ Indranil Ghosh, Apr 25 2017
(Python)
from sympy import divisors, divisor_count, npartitions, mobius
def a006128(n): return sum([divisor_count(m)*npartitions(n - m) for m in range(1, n + 1)])
def a(n): return sum([mobius(n/d)*a006128(d) for d in divisors(n)]) # Indranil Ghosh, Apr 25 2017
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Aug 13 2003
EXTENSIONS
More terms from Robert G. Wilson v, Aug 17 2003
STATUS
approved