login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A085407
Runs of zeros in binomial(3k+2,k+1)/(3k+2) modulo 2 (A085405).
2
1, 1, 3, 1, 5, 1, 1, 11, 1, 1, 3, 1, 21, 1, 1, 3, 1, 5, 1, 1, 43, 1, 1, 3, 1, 5, 1, 1, 11, 1, 1, 3, 1, 85, 1, 1, 3, 1, 5, 1, 1, 11, 1, 1, 3, 1, 21, 1, 1, 3, 1, 5, 1, 1, 171, 1, 1, 3, 1, 5, 1, 1, 11, 1, 1, 3, 1, 21, 1, 1, 3, 1, 5, 1, 1, 43, 1, 1, 3, 1, 5, 1, 1, 11, 1, 1, 3, 1, 341, 1, 1, 3, 1, 5, 1, 1, 11
OFFSET
1,3
COMMENTS
Construction: start with strings S(1)={1}, S(2)={1,3}, S(3)={1,5}; to obtain S(k) for k>3, concatenate all previous strings excluding S(k-1), then replace the last number L in this resulting string with {4L-(-1)^k}. This sequence is the limit of S(k) as k grows, generating strings with Fibonacci growth: {1,1,11}, {1,1,3,1,21}, {1,1,3,1,5,1,1,43}, {1,1,3,1,5,1,1,11,1,1,3,1,85}, ...
FORMULA
For n>0, a(F(n))=A001045(n), where F(n) is the n-th Fibonacci number with F(1)=1, F(2)=2.
EXAMPLE
To generate string S(4) at k=4: concatenate {S(1),S(2)} = {1, 1,3}, then replace the last number L=3 by 4*L-1=11 to obtain S(4)={1,1,11}.
At k=5: concatenate {S(1),S(2),S(3)} = {1, 1,3, 1,5}, then replace the last number L=5 by 4*L+1=21 to obtain S(5)={1,1,3,1,21}.
CROSSREFS
Cf. A006013, A001045, A085405, A022340 (positions of ones).
Sequence in context: A326454 A227507 A134700 * A378132 A325523 A352483
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 29 2003
STATUS
approved