login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A089089 Convoluted convolved Fibonacci numbers G_j^(2). 1
0, 1, 2, 5, 9, 19, 34, 65, 115, 210, 368, 654, 1136, 1985, 3422, 5911, 10125, 17345, 29550, 50305, 85311, 144516, 244128, 411900, 693496, 1166209, 1957842, 3283145, 5497985, 9197455, 15368386, 25655489, 42785859, 71293590, 118692688 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

LINKS

Table of n, a(n) for n=1..35.

A. R. Ashrafi, J. Azarija, K. Fathalikhani, S. Klavzar, et al., Orbits of Fibonacci and Lucas cubes, dihedral transformations, and asymmetric strings, 2014.

A. R. Ashrafi, J. Azarija, K. Fathalikhani, S. Klavzar and M. Petkovsek, Vertex and edge orbits of Fibonacci and Lucas cubes, 2014; See Table 2.

P. Moree, Convoluted convolved Fibonacci numbers, arXiv:math/0311205 [math.CO], 2003.

FORMULA

G.f.: (x/2)*(1/(1 - x - x^2)^2 - 1/(1 - x^2 - x^4)).

MAPLE

with(numtheory): f := z->1/(1-z-z^2): m := proc(r, j) d := divisors(r): W := (1/r)*z*sum(mobius(d[i])*f(z^d[i])^(r/d[i]), i=1..nops(d)): Wser := simplify(series(W, z=0, 80)): coeff(Wser, z^j) end: seq(m(2, j), j=1..40);

MATHEMATICA

CoefficientList[Series[(1/2) (1/(1 - x - x^2)^2 - 1/(1 - x^2 - x^4)), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 27 2015 *)

CROSSREFS

Sequence in context: A085410 A073118 A048082 * A014495 A056326 A280247

Adjacent sequences:  A089086 A089087 A089088 * A089090 A089091 A089092

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Dec 05 2003

EXTENSIONS

Edited by Emeric Deutsch, Mar 06 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 23 12:38 EST 2020. Contains 332159 sequences. (Running on oeis4.)