The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A089089 Convoluted convolved Fibonacci numbers G_j^(2). 1
 0, 1, 2, 5, 9, 19, 34, 65, 115, 210, 368, 654, 1136, 1985, 3422, 5911, 10125, 17345, 29550, 50305, 85311, 144516, 244128, 411900, 693496, 1166209, 1957842, 3283145, 5497985, 9197455, 15368386, 25655489, 42785859, 71293590, 118692688, 197452746, 328223544 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 LINKS Table of n, a(n) for n=1..37. A. R. Ashrafi, J. Azarija, K. Fathalikhani, S. Klavzar, et al., Orbits of Fibonacci and Lucas cubes, dihedral transformations, and asymmetric strings, 2014. A. R. Ashrafi, J. Azarija, K. Fathalikhani, S. Klavzar and M. Petkovsek, Vertex and edge orbits of Fibonacci and Lucas cubes, 2014; See Table 2. P. Moree, Convoluted convolved Fibonacci numbers, arXiv:math/0311205 [math.CO], 2003. Index entries for linear recurrences with constant coefficients, signature (2,2,-4,-1,0,0,2,1). FORMULA G.f.: (x/2)*(1/(1 - x - x^2)^2 - 1/(1 - x^2 - x^4)). MAPLE with(numtheory): f := z->1/(1-z-z^2): m := proc(r, j) d := divisors(r): W := (1/r)*z*sum(mobius(d[i])*f(z^d[i])^(r/d[i]), i=1..nops(d)): Wser := simplify(series(W, z=0, 80)): coeff(Wser, z^j) end: seq(m(2, j), j=1..40); MATHEMATICA CoefficientList[Series[(1/2) (1/(1 - x - x^2)^2 - 1/(1 - x^2 - x^4)), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 27 2015 *) CROSSREFS Sequence in context: A085410 A073118 A048082 * A369854 A014495 A056326 Adjacent sequences: A089086 A089087 A089088 * A089090 A089091 A089092 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, Dec 05 2003 EXTENSIONS Edited by Emeric Deutsch, Mar 06 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 22 02:24 EDT 2024. Contains 372741 sequences. (Running on oeis4.)